Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Циклы термодинамика

    Напряженность циклов Термодинамика полимеризации [c.328]

    Второе начало термодинамики говорит о том, что самопроизвольно теплота передается от тела с более высокой температурой к телу с более низкой температурой и никогда наоборот. Получение же холода связано как раз с передачей теплоты от менее нагретого тела к более нагретому, т. е. с переносом теплоты с низшего температурного уровня на высший. Такой перенос возможен только с затратой работы. В качестве переносчика теплоты с низшего температурного уровня на высший используется специальное рабочее вещество-хладагент, совершающее круговой процесс. Идеальным круговым процессом является обращенный цикл Карно (рис. 39). [c.121]


    Непосредственное охлаждение основано на использовании дроссельного или детандерного расширительных циклов в различном сочетании. Из термодинамики известны холодильные циклы, основанные иа дросселировании, — циклы Линде  [c.134]

    Основные сведения из технической термодинамики и теплопередачи рассматриваются в данной главе, тепловые двигатели и протекающие в них процессы — в гл. V, а циклы компрессоров — в гл. IX и X. [c.19]

    Основным законом, которому подчиняются термодинамические циклы, является второй закон термодинамики. Согласно этому закону в термодинамическом цикле невозможно полностью преобразовать в работу всю теплоту, подведенную к рабочему телу часть подведенной теплоты должна быть отдана холодному источнику и в работу не преобразуется. [c.31]

    Впервые экономичность термодинамических циклов проанализировал в прошлом веке французский инженер С. Карно. Он исследовал цикл, который занимает в термодинамике особое место и носит название цикла Карно. [c.31]

    Цикл Карно для идеального газа является идеальной, не осуществимой в практике схемой тепловой (холодильной) машины. В технической термодинамике рассматриваются другие циклы, более близкие к реальным процессам в тепловых машинах, и вычисляются коэффициенты полезного действия этих циклов. [c.46]

    Путем исследования цикла Карно с использованием второго закона термодинамики могут быть доказаны две важные теоремы, из которых можно найти количественный критерий направления процесса. [c.81]

    Описанный цикл является равновесным и, согласно второму закону термодинамики, его работа должна быть равна [см. уравнения (III, 5а) и (I, 32)]  [c.268]

    Гл. 15-19 образуют третий учебный цикл, в котором рассматриваются вопросы термодинамики и химическое равновесие. Материал, касающийся первого и второго законов термодинамики, не изменился по сравнению с прежними изданиями книги, но теперь он разбит на три главы, что облегчит усвоение материала. Статистическое описание энтропии дано в более простой форме. Добавлена новая, 18-я глава по фазовым равновесиям. Поскольку этот материал излагается с привлечением количественного описания, он часто оказывается трудным для начинающих студентов в связи с этим мы значительно увеличили число примеров в тексте, пересмотрели имевшиеся упражнения и добавили новые. [c.10]

    Независимость энтальпии превращения от пути реакции можно проиллюстрировать при помощи схемы энергетического цикла, которая изображена на рис. 15-5 для нашего примера с синтезом алмаза. Первый закон термодинамики утверждает, что любой путь перехода между двумя состояниями (одностадийный или двухстадийный, как в данном цикле) при- [c.22]


    Понятие равновесия играет исключительную роль в химической кинетике, поскольку оно определяет предел возможных изменений состояний реагирующей системы и зависит только от начальных условий и свойств самой системы, а не от условий проведения процесса. Несколько упрощая существо дела, термодинамику можно определить как пауку о равновесии или как учение о направленности процесса, в то время как кинетика — наука о его скорости. Более строго термодинамика — часть физики, изучающая общие свойства систем, находящихся в стационарном равновесном состоянии. Термодинамическим процессом называется всякое изменение состояния системы. Термодинамический процесс называется обратимым (равновесным или квазистатическим), если он протекает таким образом, что в ходе процесса изолированная система последовательно занимает ряд равновесных (точнее говоря, почти равновесных) состояний. Если в результате некоторого процесса система вернется в исходное состояние, то такой процесс называется циклом. Результатом обратимого цикла является возвращение системы в состояние, тождественно эквивалентное исходному. [c.21]

    Вместе с тем, в фотохимических реакциях, когда осуществляется непрерывный подвод энергии к системе и форма термодинамических уравнений меняется, расчетные соотнощения так называемых темновых реакций неприменимы. Осуществляя фотохимическую циклизацию производных бутена, удалось с ощутимыми выходами получить производные циклобутана [39]. Этот случай интересен для химиков тем, что указывает пути поиска условий синтеза в таких ситуациях, когда термодинамика термических и каталитических реакций накладывает запрет на проведение реакции. Ясно также, что если образуется ненапряженный цикл (циклопентановый, циклогексановый), то циклизация олефинов возможна с высокими конверсиями и ей будут благоприятствовать невысокие температуры. [c.215]

    Так как характер изменения давления и температур в цилиндре циклический, иногда говорят о рабочем цикле в поршневом компрессоре. Это выражение не рекомендуется, поскольку в термодинамике циклом называется замкнутый процесс, характеризующийся возвратом тел в исходное состояние, а в компрессоре осуществляется разомкнутый процесс изменения состояния основной нагнетаемой порции газа. [c.231]

    Второй закон термодинамики дает возможность показать вполне строго, что коэффициент полезного действия основного термодинамического цикла равен [c.213]

    Второй закон термодинамики устанавливает, что в любом цикле, включающем необратимые процессы [c.217]

    Термодинамика как наука была оформлена в работе французского ученого С. Карно (1796—1832) Размышления о движущей силе огня и о машинах, способных развивать эту силу , в которой были изложены основы теории работы тепловых машин. В это же время создается метод циклов, который начинает применяться не только для изучения работы тепловых машин, но и для исследования термодинамических процессов типа фазовых переходов. Этот метод был использован Р. Клаузиусом для изучения термодинамики процесса испарения жидкостей. После введения некоторых упрощений было получено уравнение для расчета процессов фазового превращения веществ в разных агре- [c.13]

    Результаты, получаемые с помощью цикла Карно, используют при формулировке 2-го закона термодинамики и составления выражения для расчета коэффициента полезного действия работы тепловых машин. Доля полезной работы, которую может производить за один цикл тепловая машина, определяется по уравнению  [c.61]

    Используя цикл Карно и 2-ой закон термодинамики, работу можно вычислить по выражению  [c.89]

    Выведите уравнение Клаузиуса—Клапейрона методом термодинамических функций, на основе уравнения 1-го и 2-го законов термодинамики с применением калорических коэффициентов, по уравнению Максвелла, по зависимости термодинамической функции от Р и методом термодинамического цикла. [c.187]

    Широкий профиль подготовки специалиста обеспечивает глубокое изучение таких общеинженерных технических дисциплин, как сопротивление материалов, теория механизмов и машин, материаловедение, технология конструкционных материалов, детали машин, гидравлика, термодинамика и теплопередача, электротехника и ряд других, которые в то же время являются основополагающими и для цикла профилирующих дисциплин. [c.4]

    Одной из главных проблем термодинамики является конкретная формулировка условий термодинамического равновесия для различных специальных случаев (например, равновесие жидкость — пар, осмотическое равновесие, химическое равновесие). Старые методы решения этой проблемы (которые были распространены в Европе вплоть до 1930 г.) состояли в том, что для каждой конкретной задачи конструировали обратимый цикл. [c.76]

    Эти значения 9 в практике не получены, и двигатели, работающие по теоретическому круговому замкнутому циклу Карно, не созданы. Цикл Карно, разработанный чисто логическим путем на основе законов термодинамики, служит лишь для сравнительной оценки других теоретических циклов. [c.15]


    Лекция 12. Обратимые и необратимые процессы, циклы. Тепловые двигатели и холодильные машины. Цикл Карно и его КПД. Второе начало термодинамики, необратимый цикл Карно. [c.164]

    Авторы отказались от традиционного изложения второго начала термодинамики на основе рассмотрения обратимо работающего цикла Карно. По мнению авторов, принцип Каратеодори об адиабатной недостижимости некоторых состояний позволяет значительно логичнее, проще и яснее обосновать второе начало, чем рассмотрение цикла Карно. [c.4]

    Интересно сопоставить работу, затрачиваемую в адиабатическом цикле, с количеством тепла, отводимого в холодильнике при охлаждении в нем газа до начальной температуры. В адиабатическом цикле q = Ои согласно первому началу термодинамики (1.53) работа lad равна увеличению энтальпии газа в цилиндре [c.29]

    Дизельный двигатель, названный так по имени изобретателя Рудольфа Дизеля, не имеет свечей зажигания. Это четырехтактный мотор, работа которого осуществляется по циклу, близкому к идеальному с точки зрения термодинамики. [c.96]

    Работа холодильных машин основана на том, что от охлаждающей среды отнимается тепло и передается телу с более высокой температурой (воде или воздуху), т. е. происходит переход тепла от менее нагретого тела к более нагретому. Согласно второму началу термодинамики такой переход возможен только при дополнительной затрате работы извне и достигается осуществлением обратного кругового термодинамического процесса или холодильного цикла. В качестве такого холодильного цикла принят обратный цикл Карно, который осуществляется с помощью рабочего тела, называемого холодильным агентом (хладагентом). [c.373]

    Подобно тому, как в первом законе используется функция состояния — внутренняя энергия и, второй закон в форме, предложенной Клаузиусом, оперирует новой функцией состояния — энтропией 5. К понятию энтропии можно подойти, доказав теорему, что любой замкнутый обратимый цикл можно разбить на бесконечно большое число бесконечно малых циклов Карно. Эта теорема была доказана Клаузиусом, в результате чего дано аналитическое выражение второго закона термодинамики для обратимых процессов [c.94]

    Согласно законам термодинамики, при переносе тепла от среды с более высокой температурой Т к среде с более низкой температурой наибольшая степень превращения тепла в работу соответствует коэффициенту полезного действия цикла Карно. Обратным циклом Карно называется процесс переноса тепла от менее нагретого тела к более нагретому при затрате механической работы.Обратный цикл Карно (рис. XVH-1) состоит нз следующих процессов  [c.647]

    Во время прохождения цикла система получает теплоту Qц и совершает работу Ац. При этом, согласно первому закону термодинамики, должно выполняться равенство [c.34]

    В случае изотермического процесса значения работы как при замкну-то.м цикле, так и абсолютное, равны друг другу и подсчитываются по уравнениям (38) и (38 а). Более подробно понятия абсолютного и кругового адиабатического цикла, а также вывод уравнений работы для ннх подробно изложены в учебниках по технической термодинамике. Из определения абсолютного и кругового цикла следует, что пракпически все расчеты адиабатических процессов производят по уравнениям кругового цикла. [c.72]

    В отдельных случаях некоторые из перечисленных систем могут отсутствовать, например, система обогрева. Вопросы функционирования, расчета и конструирования ряда указанных систем (3—7) рассматривают в общеинженерпых дисциплинах машиностроительного цикла — в курсах Теория механизмов и машин , Детали машин , Термодинамика и теплопередача , Электротехника , Гидравлика и др. Это 1юзволяет в дальнейшем остановиться лишь иа тех особенностях проектирования систем, которые характерны для машин химических производств. [c.8]

    В 1869 г. Ф. Массье вводит представление о характеристических функциях, а Дж. В. Гиббс в 1875 г. развивает термодинамику химических неоднородных систем на основе понятия о химическом потенциале и вводит в термодинамику новую функцию— свободную энтальпию (или энергию Гиббса по современной терминологии). Гиббс вводит в термодинамику метод термодинамических функций, позволяющих составлять любые термодинамические уравнения, которые ранее выводили методом термодинамических циклов. Этот метод был более удобным, простым при составлении термодинамических уравнений для изучаемого процесса, но он менее наглядный по сравнению с методом термодинамических циклов. В 1882 г. Г. Гельмгольц открывает термодинамическую функцию — свободную энергию, которую по современной терминологии вызывают энергией Гельмгольца—А. Он же вывел уравнение зависимости А=А Т), которое получило название уравнения Гиббса—Гельмгольца. [c.14]

    Таким образом, термический к. п. д. цикла Карно зависит только от отношения температур холодного и горячего источников. Ои тем больше, чем ниже температура холодного источника Ли иыше температура горячего источника Ti. В курсе термодинамики доказывается, что цикл Карно имеет максимальный к. п, д. для источников тепла с температурами Ti и Т . [c.135]

    Второй закон термодинамики говорит, что не все тепло, содержащееся в топливе, превращается в работу. В самых совер-щекных двигателях и машинах можно превратить в механическую работу лищь некоторую часть затрачиваемой теплоты, зависящую только от отнощений абсолютных температур, между которыми протекает цикл. Часть тепла должна быть отдана в окружающую среду. В практических условиях к этим неизбсук-ны г потерям добавляется ряд других тепловых и механических потерь, которые еще больше снижают фактически снимаемую с мотора мощность и которые зависят от конструктивных и эксплуатационных особенностей той или иной машины. Неизбежные же термодинамические потери тепла полностью зависят от рабочего процесса или цикла двигателя. Для сравнения этих [c.14]

    Теория химической связи и строения молекул излагается на основе теории Шрёдингера. Расчеты абсолютных энтропий и констант равновесия ведутся на основе постулата Планка и т. п. Если данная закономерность может быть выведена несколькими способами, то в книге выбирается наиболее строгий и общий путь. Так, например, в химической термодинамике мы отказались от метода циклов и все выводы даем при помощи метода функций. [c.3]

    Существует целый ряд теорий, преследующих цель объяснить вышеуказанное явление. Но авторы настоящего труда считают излишним рассматривать их в этом месте. Общее мнение сводится, очевидно, к тому, что в действительности гистерезис представляет собой явление механического свойства. Наблюдаемое при адсорбции разбухание не связано целиком с десорбцией, вследствие чего водяному пару открыт доступ к более значительной площади поверхности. Баркас (см. ссылку 186) объясняет это обстоятельство с точки зрения термодинамики. В своих рассуждениях он прибегает к обосноваийям, на которых построены известный цикл Карно и другие циклические процессы. [c.216]

    Все термодинамические способы повышения степени рекуперации тепловой энергии в узлах теплообмена и ТС в целом определяются вторым законом термодинамики [7,20-24] идельаные обратимые процессы протекают без изменения энтропии, в то время как в реальных, необратимых процессах, она возрастает. Наиболее отчетливо это видно из анализа идеального цикла Карно, в котором возможно максимальное превращение имеющегося тепла в работу. Если обозначить количество тепла при температуре потока Т через Ц, а -температура окружающей среды, то теоретически максимально возможное количество работы А, получаемое в цикле Карно, равно Q (Т -Т )/Т . Величина TQ/TJ - часть тепла, которое рассеивается в атмосферу (рис. I). Зависимость цикла Карно от температуры =(Т]--Тд)/Т представлена на рис. 2. Из изложенного вытекает несколько важных термодинамических предпосылок, учет которых при синтезе оптимальных ресурсосберегающих ТС позволяет обеспечивать их высокую эффективность. [c.38]

    Согласно термодинамическим способам повышения эффективности синтезируемых. ТС, вытекающим из эксергетического метода термодинамического анализа, потери эксергии в кавдом из УТ системы минимальны, если обеспечивается максимизация 7 / и минимизация Тг- в операциях теплообмена между потоками С3,29,31,7]. Из эвристических правил синтеза ТС, полученных, исходя из 2-го закона термодинамики, известно, что, чем выше температура теплоносителя-нагревателя, тем выше КПД цикла, тем выше степень рекуперации тепла. Поэтому рекуперацию тепла рекомендуется осуществлять при возможно более высокой температуре [ 3,29,31,56-60]. Следовательно, исходя из этих двух основных, на данном этапе синтеза ТС, способов повышения эффективности процесса теплообмена для максимизации 7 , необходимо выбирать горячий поток с наибольшей . Тогда, и только тогда, обеспечивается наибольшая рекуперация тепла в кавдом из УТ, совокупность которых составляет ТС. [c.70]


Смотреть страницы где упоминается термин Циклы термодинамика: [c.74]    [c.80]    [c.110]    [c.6]    [c.92]    [c.219]    [c.14]    [c.340]    [c.7]   
Химия высокомолекулярных соединений Издание 2 (1966) -- [ c.134 ]




ПОИСК







© 2025 chem21.info Реклама на сайте