Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Конверсия метана в высшие углеводороды

    Схема процесса представлена на рис. 13.6. В качестве примера рассматривается очистка водорода, получаемого паровой конверсией углеводородов природного газа. Выходящая из реактора газовая смесь, содержащая главным образом водород, окись и двуокись углерода, охлаждается добавкой водяного пара и конденсата примерно до 370° С и пропускается через, конвертор СО первой ступени, заполненный катализатором. Здесь 90—95% присутствующей окиси углерода превращается в двуокись с образованием эквивалентного количества водорода. Первая ступень конверсии служит в основном для получения дополнительного водорода и поэтому не может рассматриваться как операция очистки газа в узком смысле этого термина. Горячий газ, выходящий из конвертора СО, охлаждается примерно до 38° С, после чего двуокись углерода удаляют обычными регенеративными жидкостными процессами (этаноламиновая или поташная очистка). Очищенный от двуокиси углерода газ снова подогревается в печи и после добавки водяного пара проходит через конвертор второй ступени, за которым следует вторичная очистка от двуокиси углерода. Для получения водорода весьма высокой чистоты может быть добавлена третья ступень конверсии и удаления двуокиси углерода. Газ, получаемый по схеме с трехступенчатой конверсией СО, имеет следующий типичный состав (в % объемн.) окись углерода 0,02, двуокись углерода 0,01, метан 0,27, водород 99,7. [c.332]


    В работе [15] описан электродуговой процесс получения ацетилена — процесс фирмы Дюпон де Немур , являющийся улучшенным вариантом электрокрекипга фирмы Хюльс . В этом процессе метан проходит через электрическую дугу, горящую между охлаждаемым цилиндрическим анодом и помещенным внутри на его оси катодом. Дуга вращается со скоростью 7000 об./сек., образуя как бы сплошной конус. В дуговом промежутке и происходит крекинг метана. Ниже дуговой зоны реакционные газы охлаждаются углеводородами с молекулярным весом от 16 до 150 до температуры 1400° К. При этом они пиролизуются до ацетилена. Далее все продукты охлаждаются водой. В этом процессе степень конверсии метана в ацетилен достигает 80%, концентрация ацетилена в получаемом газе 21—22 об.% энергозатраты составляют 12,5—13,3 квт-ч на 1 кг ацетилена. Столь высокая концентрация ацетилена в продуктах реакции создается благодаря проведению процесса в две стадии (крекинг метана в дуге и пиролиз тяжелых углеводородов в струе газов крекинга метана) и использованию в качестве сырья метана с добавками более тяжелых углеводородов. [c.245]

    Катализаторы конверсии бензиновых фракций с водяным паром при средних температурах, низком давлении с целью получения газа для нагрева и отопления. Конверсией жидких углеводородов при средних температурах можно получить (в зависимости от выбранных условий) в качестве основных продуктов как метан, так и водород. Получение метансодержащего газа не связано с необходимостью подвода тепла в зону реакции извне и осуществляется в аппаратах шахтного типа при умеренных температурах. Получение водородсодержащего газа из бензина требует более высоких [c.42]

    Оказывается, таким образом, что при пиролизе метана с коротким периодом нагрева и в температурных пределах от 1050 до 1200°, могут быть получены лишь относительно невысокие выходы этилена. При этих условиях одновременно образуются как ацетилен, так и другие продукты, при более же высоких температурах превалирует ацетилен. Для оптимальных выходов непредельных углеводородов необходимы неактивные поверхности нагрева (состоящие из таких материалов как кварц, фарфор или медь, которые не ускоряют разложения метана на элементы). Полезным бывает также применение разбавляющих газов. Вследствие необходимости применять высокие температуры и вследствие относительно невысокой степени конверсии, метан не является подходящим сырьем для получения этилена. [c.139]


    После успешного внедрения в промышленность начавшего развиваться примерно с 1894 г. производства ацетилена из карбида кальция вни,мание к пиро-генетическому способу на время ослабло. Только значительно позднее интерес к этому методу снова возрос в связи с увеличивающимся предложением дешевого органического сырья, как например природный газ. с.месь газообразных парафинов и олефинов крекинга, сырая нефть и различные ее погоны, тяжелые смолы и асфальты. Транспортировка метана, являющегося главной составной частью природного газа, невыгодна для многих районов его добычи, а применение его как топлива и источника сажи ограничено. Поэтому и были начаты поиски способов превращения метана в другае углеводороды. Однако для быстрого разложения метана требуется настолько высокая температура, что образование при этом парафинов и олефинов в больших количествах становится невоз.можньш хогя даже ароматические углеводороды могут быть получены при 1200°, все-таки наиболее важным способом использования. метана обещает быть конверсия его в ацетилен. Вследствие этого высокотемпературный крекинг метана и привлек к себе больше внимания, че.м другие пирогенетические процессы, предложенные для получения ацетилена. В некоторых странах Европы, не богатых запасами природных газов, была изучена также возможность пиролиза газов коксовых печей, водяного газа и содержащих метан смесей, получаемых из окисей углерода и водорода, нередко являющихся дешевыми побочными продуктами. Некоторый интерес как потенциальный источник ацетилена представляет крекинг дешевых нефтяных остатков, асфальтов и смол. Газообразные парафины и олефины и низкокипящие погоны представляют ценность для других целей, поэтому на них как на сырье для получения ацетилена обращалось меньше внимания. [c.38]

    Из парафинов наиболее трудно нитруется метан, который при более высоких температурах и большем времени контакта дает меньшую конверсию в Нитропроизводные сравнительно с другими гомологами (при 450° и времени контакта 0,42 сек выход нитрометана составляет 15%) Далее, До пропана включительно, наблюдается последовательное повьппение легкости нитрования Однако углеводороды, следующие за пропаПом, не обнаруживают при нитровании заметных различий в реакционной способности [c.279]

    Имеется несколько патентов о крекинге жидкьх нефтяных продуктов, смешанных с углеводородными газами. В этих патентах указывается, что углеводородные газы, богатые водородом, могут реагировать в условиях крекинга с жидким нефтяным сырьем или продуктами разложения, обедненными водородом, и могут дать более высокие выходы бензинов и уменьшение образования кокса. Температурные условия процессов в данном случае не отличаются существенно от условий обыкновенного термического крекинга. Рекомендуемые давления те же самые или немного выше, чем при крекинге. На самом деле взаимодействие между такими газами, как метан, этан, пропан, и высокомолекулярными олефинами или циклическими углеводородами маловероятно при условиях обыкновенного крекинга с точки зрения термодинамики. Значительно более высокие температуры или более высокие давления следует применять, чтобы обеспечить их взаимодействие. Термическая конверсия низкомолекулярных парафинов также маловероятна в условиях обыкновенного крекинга. Таким образом, вряд ли эти патенты имеют практическое значение. [c.165]

    Природный газ отделяют от тяжелых углеводородов и компримируют в турбокомпрессоре 1 до 2,5 МПа, после чего направляют на очистку и далее в блок конверсии метана 3. Туда же поступает водяной пар. К метану добавляют небольшое количество СОг. Конверсия метана осуществляется при температуре 850—860 °С. После печей конверсии синтез-газ поступает в котел-утилизатор 4, где генерируется пар высокого давления (12 МПа), который затем перегревается и поступает на турбины — привод компрессоров 1 VI 11. Если конверсии подвергают тяжелое жидкое сырье, то блок очистки располагается после конверсии, а необходимость в компрессоре 1 отпадает. В последнем случае конверсию проводят при давлении 5,8 МПа, а синтез-газ после очистки не нуждается в дополнительной компрессии и поступает в циркуляционный компрессор 11. [c.336]

    Если в качестве окислительного агента применяют кислород, то при взаимодействии его с метаном происходит выделение тепла и развивается высокая температура, достигающая 1300—1500 °С. В этих температурных условиях скорость реакции конверсии достаточно велика и обеспечивает высокую степень конверсии углеводородов. Процесс конверсии, проводимый с кислородом, называемый высокотемпературной конверсией, получил промышленное применение. [c.19]

    В присутствии железных катализаторов при высоких температурах (300°) можно, однако, провести полную конверсию кислорода окиси углерода в кислород воды. После потребления большей части окиси углерода углекислота начинает реагировать с водородом и дает (через стадию промежуточного образования окиси углерода) высшие углеводороды наряду с метаном. [c.247]


    С повышением молекулярного веса углеводорода степень конверсии увеличивается лишь для температур не выше 600° С. Практически полное разложение углеводородов достигается при 800° С, т. е. при той же температуре, что и для конверсии метана. Такое совпадение объясняется тем, что не вступившие в реакции взаимодействия с водяным паром гомологи метана превращаются на никелевом катализаторе в метан, причем при 400° С — на 80—90%, а при более высокой температуре почти целиком. При 600° С и времени контакта около 0,1 сек из углеводородов в конвертированном газе остается только метан. Лишь при объемной скорости 2000 ч (время контакта [c.76]

    В другом процессе, где источником кислорода также является воздух, применяются такие псевдоожиженные термостойкие материалы, как окиси алюминия, магния или кремния. Этуэлл [3] нагревал термостойкий материал до 1093° С, продувая воздух для выжигания остаточного углерода, отложившегося на термостойком материале во время последую-ш,их операций, и добавочный топочный газ. Горючий твердый материал поступает затем в псевдоожиженный слой никелевого катализатора вместе с предварительно нагретым метаном, паром и двуокисью углерода. Это тепло горячего термостойкого материала используется для эндотермической конверсии метана в синтез-газ. Способ отделения никелевого катализатора от термостойкого материала основан на разнице в размерах их частиц (частицы термостойкого материала меньше по величине). Частицы термостойкого материала выдуваются из слоя катализатора, состоящ его из более крупных частиц. При этом возникает другая трудная технологическая задача — транспортировка горячего твердого материала, тем более, что при необходимости работать при 30 ат уменьшение скорости реакции [21] обусловит потребность в более высоких температурах для данной конверсии. Гомогенное частичное окисление метана кислородом представляет интерес для промышленности с точки зрения (I) производства ацетилена и в качестве побочного продукта синтез-газа [5, 10, 7, 12, 2 и (2) производства синтез-газа в качестве целевого продукта при давлении около 30 ат [19, 12, 2]. Для термического процесса (без катализатора) необходима температура около 1240° С или выше, чтобы получить требуемую конверсию метана [19]. Первичная реакция является сильно экзотермической вследствие быстрой конверсии части метана до двуокиси углерода я водяного пара [22]. Затем следует эндотермическая медленная реакция остаточного метана с двуокисью углерода и водяным паром. Для уменьшения расхода кислорода на единицу объема сиптез-газа в-Германии [7] для эндотермической асти реакции применяются активные никелевые катализаторы. В Соединенных Штатах Америки приняты некаталитические реакции как часть гидроколь-процосса [19, 2] для синтеза жидких углеводородов из природного газа. [c.314]

    Основное преимущество низкотемпературной конверсии — метанизации — заключается в удалении избытка тяжелых углеводородов из газа и в снижении, таким образом, конечного значения его теплоты сгорания. Однако остается проблема высоких концентраций водорода в газе, подающемся в реактор-метани-затор, и весьма высокого уровня тепла в результате реакций метанизации. [c.125]

    При конверсиа метана он составляет 50 кг на 100 1сг Щ, а при Есонверсии бензиновых фракций - 43-44 кг. Следовательно наиболее предпочтительным сырьем в производстве водорода является метан,но и жидкие углеводороды давт достаточно высокий выход [c.16]

    Требования к чистоте водорода. В промышленном масштабе конверсией углеводородного сырья получают водород чистотой более 99,9% [3]. Это требует применения высоких температур, низкого давления, большого избытка водяного пара, отсутствия инертных газов в сырьевом углеводороде и водяном паре и последующей очистки водорода для почти полного удаления примесей. Однако для многих областей применения такая высокая чистота водорода не требуется. Для большинства процессов нефтепереработки чистота водорода может быть 95% и ниже при условии, что в качестве примесей содержатся метан и азот. В таких случаях наиболее экономи- чные условия процесса достигаются соответствующим изменением температуры и давления и рациональным выбором схемы очистки. [c.172]

    Рассмотренная схема может быть дополнена включением теплообмена между газом, выходящим с одной ступени конверсии, и газом, направляемым на следующую ступень конверсип, или включением реактора метанирования для превращения остаточных с.тедов кислородных соединений углерода в метан. Давление и температуру процесса можно изменять в широких пределах. При процессах паровой конверсии углеводородов под низким и высоким давлением и процессе частичного окисления углеводородов в секции конверсии СО обычно поддерживают давление соответственно 2,1, 8,7 и 24,5 ат. Температура конверсии СО лежит в пределах 316—482° С. [c.333]

    Фактически эту реакцию обычно проводят в две ступени на первой протекает взаимодействие метана с водяным паром при высокой темпера-тлфе с образованием СО и Hg. Затем, при более низкой температуре, проводят конверсию СО с дополнительным количеством водяного нара в СО2, получая также водород. Следы СО удаляют иа ступени метанирования, после которой часть водорода снова превращается в исходный углеводород — метан. Процесс требует затраты энергии. Для получения ) водорода паровой конверсией расходуется такое количество сырья и топлива, простое сжигание которого сопровождалось бы выделением 4230 ккал. Разность между этой величиной и теплотой сгорания 1 водорода, равная 1780 ккал, и составляет расход энергии на собственно конверсию. [c.51]

    Для простых ароматических углеводородов, таких, как бензол и толуол, характерно резкое изменение природы первичных процессов при облучении во второй или третьей (1849 А) полосах поглощенМ по сравнению с их спектроскопическим и фотохимическим поведением в первой полосе поглощения при 2537 А. Недавно были определены абсолютные эффективности излучательных и безызлучательных процессов в бензоле и некоторых его алкильных производных при возбуждении во второе или третье синглетное состояние [699] . Прямой флуоресценции из этих состояний не наблюдается внутренняя конверсия из высших состояний и. з в первое возбуяеденное состояние б очень неэффективна, особенно в парах очень мала эффективность переноса энергии (любым спектроскопическим путем) с высших синглетных состояний бензола на нижнее триплетное состояние диацетила (см. работу [495в]). Это говорит о том, что в газовой фазе во второй и третьей полосах с высокой эффективностью происходит химическая реакция [699] этот вывод был недавно подтверн ден [502]. При 1849 А квантовый выход исчезновения бензола в парах около единицы в отличие от 0,0000 при 2537 А (при 2537 А не было обнаружено разложения в газовой фазе) [502]. Единственным продуктом при 1849 А, очевидно, является изомер (изомеры) бепзола с высокой энергией, который разлагается на углерод и (или) полимер и следы летучих продуктов, таких, как водород, метан, ацетилен, этан. [c.418]

    В нашей стране наибольшие количества метана используются в качестве бытового газа. Применение метана для органического синтеза — одна из труднейших задач, так как метан наиболее пассивен из всех парафиновых углеводородов. Однако эта задача в настоящее время принципиально (а в ряде случаев н практически) разрешена. Метан может быть превращен путе.м термического крекинга или под действием тлеющих разрядов в зысокореакционноспособный углеводоро д — ацетилен. Можно каталитически окислить метан до муравьиного альдегида или муравьиной кислоты хлорированием метана могут быть получены хлористый метил, хлористый метилен, хлороформ, четырех-хлористый углерод, а нитрованием — нитрометан. Метан также используется для промышленного синтеза синильной кислоты. Важный путь использования метана — конверсия его в окись углерода и водород (исходная смесь для синтеза метанола, син-тина и синтола), протекающая при действии на метан паров воды при высокой температуре в присутствии катализаторов. Наконец, большие количества метана используются для получения сажи (термическое разложение метана на углерод и водород), В Советском Союзе этим путем ежегодно получают сотни тысяч тонн сажи, предназначенной в качестве наполнителя для синтетического каучука и для других целей. [c.32]

    Реализация метода синтеза изопрена из пропилена стала возможной лишь после того, как была открыта реакция инициируемого крекинга 2-метилпентена-2 в присутствии бромистого водорода [10, 60]. Применение гомогенного инициатора позволило снизить температуру крегинга изогексена на 100—125 °С, исключив тем самым опасность образования ацетиленовых углеводородов. Одновременно возрастает конверсия исходного сырья и выход изопрена (табл. 31). По данным, полученным на опытной установке НИИМСК, конверсия 2-метилпентепа-2 за проход составляет при пиролизе 30,5%, при инициированном крекинге 70%, селективность реакции соответственно 38,7 и 50 вес. % [45]. Наиболее высокие показатели процесса, судя по данным разных авторов [10, 60—63], получены нри температуре 675 °С, времени контакта 0,3—0,4 с и мольном соотношении ызо-СеН з НзО НВг 1 5 0,06. В этих условиях выход изопрена на пропущенное сырье составляет 33—35% нри селективности реакции 55—56%. Одновременно образуются следующие продукты реакции (примерный выход в мол. %) метан — [c.186]

    Трудно понять, почему Сабатье и Сендерен не могли наблюдать образования высших углеводородов из окиси углерода и водорода. Сабатье и Сендерен в 1902 г. [так же как и Фишер и Тропш (1925—1928 гг.) и Фишер и Мейер (1931 г.)] проводили конверсию окиси углерода и водорода на никелевых каталзиато-рах при температурах 180° и выше и при атмосферном давлении. Однако, как было указано выше, метод приготовления катализатора является решающим в протекании синтеза. При проведении большей части опытов Сабатье [32] применял никелевые катализаторы, приготовленные восстановлением чистой окиси никеля при температуре 700°. Такой катализатор обладает высокой гидрирующей активностью и способен катализировать многие реакции гидрирования, например превращение бензола в циклогексан или конверсию окиси углерода и углекислоты в метан. Однако он не пригоден для образования углерод-углерод-ной связи, как это необходимо при синтезе высших углеводородов. [c.209]

    В настоящее время сырьем для производства ацетилена служит также метан. Из всех углеводородов метан наиболее терми-ческистойкий. Превращение его в ацетилен начинается при температурах выше 700°С и лишь при температурах 1400—1500 С выход достигает эффективных значений. Более высокие температуры ускоряют процесс распада метана на элементы. Необходимым условием для конверсии углеводородов до ацетилена является проведение процесса при высоких температурах, низком парциальном давлении сырья и конечного продукта, коротком времени контактирования и резком охлаждении (закалке) образующейся газовой смеси- Из уравнения распада метана видно, что реакция протекает с увеличение.м объема  [c.269]


Смотреть страницы где упоминается термин Конверсия метана в высшие углеводороды: [c.125]    [c.290]    [c.58]    [c.58]    [c.339]   
Смотреть главы в:

Природный газ -> Конверсия метана в высшие углеводороды

Окислительные превращения метана -> Конверсия метана в высшие углеводороды

Окислительные превращения метана -> Конверсия метана в высшие углеводороды




ПОИСК





Смотрите так же термины и статьи:

Конверсия метана



© 2025 chem21.info Реклама на сайте