Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Упругое число

    Виноградов с соавторами [44] для описания критических условий течения ввели безразмерное число (так называемое упругое число Рейнольдса) . . [c.276]

    При получении из бурого угля 100 000 т бензина образуется около 18 000 т сжиженных газов (бутан и пропан), которые можно использовать для химической переработки, в том числе около 10 000 т пропана (примерно 83% от потенциала) и 8000 т бутанов (приблизительно поровну н-бутапа и изобутана). Фактически выход бутана составляет в среднем 13 000 г, т. е. около 91% от потенциала, но из них 5000 г используют в качестве компонента для добавки к товарным бензинам. В зимний период для поддержания нормированной упругости паров бензина с учетом низких температур воздуха к товарному бензину добавляют больше бутана, чем летом. Наряду с сжиженными газами получают также около 4000 т этана, что соответствует 60% от потенциала. Остальной этан и весь метан находятся, как будет показано ниже, в бедных газах гидрогенизации. [c.31]


    Аналитическое решение системы дифференциальных уравнений удается получить лишь в ограниченном числе простейших очень сильно идеализированных случаев, например в задаче о притоке упругой жидкости к скважине в пласте бесконечной протяженности с постоянным дебитом. [c.37]

    Для вывода основных дифференциальных уравнений фильтрации упругой жидкости в упругой пористой среде необходимо воспользоваться уравнением неразрывности потока, уравнениями состояния пористой среды и насыщающей ее жидкости и уравнениями движения. При этом используем подход, развитый в гл. 2, в соответствии с которым в качестве уравнения состояния среды и жидкости используются упрощенные эмпирические соотношения. Как показывают результаты лабораторных экспериментов на образцах пород-коллекторов, а также опыт разработки месторождений, в ряде случаев наряду с изменением пористости вследствие происходящих деформаций существенны изменения проницаемости пластов. Особенно это относится к глубокозалегающим нефтяным и газовым месторождениям. Это вызывает необходимость учета в фильтрационных расчетах как при упругом, так и при других режимах фильтрации изменений проницаемости с изменением пластового давления (см. гл. 2). Развитию теории упругого режима с учетом этого фактора посвящено большое число исследований. Однако изложение этого раздела в более общей постановке, предусматривающей также введение в уравнения фильтрации зависимости проницаемости от давления, заметно усложнит изложение, поэтому авторы считают целесообразным, сохранив традиционный подход, рекомендовать читателям обратиться к монографиям, посвященным этому вопросу. [c.134]

    Давление, оказываемое идеальным газом, возникает в результате столкновений молекул со стенками сосуда. При равновесии эти столкновения должны в среднем быть совершенно упругими, так как газ не теряет энергию и не приобретает ее от сосуда. Это условие должно выполняться в среднем во времени нри большом числе столкновений, так как каждая отдельная молекула, сталкивающаяся со стенкой сосуда, может после столкновения иметь уже иную компоненту количества движения ти (г — ось, [c.134]

    В каждом углеводородном ряду с увеличением числа атомов углерода в молекуле и, следовательно, общего числа атомов в ней увеличиваются молекулярный вес углеводорода, температура его кипения, а также удельный вес. Упругости паров углеводородов при этом уменьшаются. Величина упругости паров является показателем летучести углеводорода. [c.13]


    Упругость паров при 38°, мм рт. ст. 400 Октановое число (с добавкой 4. ил/кг [c.157]

    После добавки этиловой жидкости октановое число автобензина (с концом кипения 200—205° и упругостью паров по Рейду около 500 мм рт. ст.) увеличивается на 4—10 пунктов. Степень повышения октанового числа зависит от группового химического состава бензина, содержания в нем сернистых соединений, количества добавляемой этиловой жидкости и концентрации в последней тетраэтилсвинца. [c.229]

    Рассматриваются два случая соударения капель со стенкой - не-упругое и упругое. В первом случае считается, что капля, попав на стен ку, остается на ней и не участвует в дальнейшем массообмене. Во втором случае предполагается, что соударение капель со стенкой упругое. Рассматривается общий случай полидисперсного распыла при любом числе форсунок в каждом ярусе орошения. Рассмотрим вначале массообмен при движении одиночной капли. [c.253]

    При рассмотрении проблем, связанных с получением чистых высокомолекулярных углеводородов, возникают специфические трудности. Наиболее важной проблемой является большое число возможных примесей изомеров или гомологов с малым различием физических свойств, в частности температур кипения, что уменьшает эффективность процесса фракционного разделения при очистке. Кроме того, применению колонок высокой эффективности для фракционной перегонки обычно препятствует очень низкая упругость паров высокомолекулярных веществ. [c.496]

Рис. 3. Октановое число крекинг-бензина с упругостью паров по Рейду около 500 мм рг. ст. Рис. 3. <a href="/info/1115242">Октановое число крекинг-бензина</a> с <a href="/info/12766">упругостью паров</a> по Рейду около 500 мм рг. ст.
    Октановое число бензина с упругостью паров 517 мм рт. ст. по моторному 79.7 1 71,5 71—72 [c.178]

    Поскольку число столкновений огромно, а большинство реакций протекает медленно, очевидно, что не каждое столкновение приводит к реакции. Вероятно, при соударениях реагируют только те молекулы, которые обладают избыточной энергией, превышающей некоторую критическую величину, называемую энергией активации. Обычно эти активные молекулы составляют лишь очень незначительную долю от общего их числа. По ряду соображений полагают, что отдельные молекулы газа отличаются друг от друга скоростью теплового движения и, следовательно, своей кинетической энергией. Это будет справедливо в том случае, если столкновения молекул являются более или менее упругими, так как после упругих соударений одни молекулы будут увеличивать свою скорость, а другие—уменьшать. [c.39]

    Углеводороды газовых бензинов. Газовые бензины после стабилизации состоят главным образом из парафиновых углеводородов Сб—Се. Указанные углеводороды обладают высокой упругостью паров и низкими октановыми числами, что является серьезным препятствием к использованию газовых бензинов в качестве самостоятельного моторного топлива без предварительной его переработки [7]. [c.16]

    Молекулярно-кинетическая теория газов позволяет успешно объяснить свойства идеального газа на основе минимального числа исходных предположений, а также дает возможность понять причину отклонений свойств реальных газов от идеального поведения. В своей простейшей форме молекулярно-кинетическая теория исходит из предположений, что газ состоит из невзаимодействующих молекул, которые могут рассматриваться как точечные массы и находятся в состоянии постоянного движения, прерываемого лишь упругими столкновениями друг с другом и со стенками сосуда. Когда мы хотим распространить эту теорию на реальные газы, приходится учитывать, что молекулы имеют конечный объем и что между ними действуют силы взаимного притяжения. [c.156]

    Помимо электронных энергетических уровней молекулы обладают еще энергетическими уровнями, связанными с вращательным (рис. 13-30) и колебательным (рис. 13-31) движениями. Вообще говоря, любая линейная многоатомная молекула может вращаться вокруг трех взаимно перпендикулярных осей, проходящих через ее центр тяжести, как это показано на рис, 13-30. Для линейной (в том числе и всякой двухатомной) молекулы одна из этих осей совпадает с прямой линией, на которой находятся ядра всех атомов, поэтому линейные молекулы могут совершать реальное вращение только вокруг двух остальных осей. На рис. 13-31 показаны тины колебаний двухатомной, линейной трехатомной и нелинейной трехатомной молекул. При обсуждении молекулярных колебаний часто оказывается удобным представлять себе, что связи между атомами обладают свойствами упругих пружинок, которые поэтому и изображены на рис. 13-31. [c.583]


    Поршневые кольца из фторопласта имеют меньшую упругость, чем чугунные кольца. Для какой цели при замене чугунных колец на фторопластовые число поршневых колец увеличивается  [c.201]

    Усталость характеризуется номинальными напряжениями предела текучести повторное нагружение макроскопически происходит в упругой области, число циклов до разрушения велико. [c.149]

    Температура застывания, "С Теплота сгорания, ккал1кг Упругость паров при 38°, мм рт. ст. октановое число без Р-9 (моторный метод) октановое число с 4 мл/кг Р-9 (метод 1-С) сортность с 4 мл/кг Р 9 (метод 3-С) [c.179]

    Получаемая в результате каталитической очистки тяжелого дебутанизированного бензина фракция Св содержит 84—88% объемн. изопентана и небольшое количество непредельных углеводородов (3—6%). Концентрированная изопентановая фракция, называемая компонентом испаряемости, добавляется в авиабензин дпя довеления упругости его паров до нормированной величины (360 мм рт. ст. по Рейду). Добавка изопентана повышает не только упругость паров авиабензина, но и его октановое число. Изопентан имеет высокое начальное октановое число (90 пунктов) и высокую приемистость к тетраэтилсвинцу. Выход фракции Сб составляет в зависимости от качеств перерабатьшаемого сырья и режимов процессов крекинга и очистки 6—12% вое. от исходного сырья — керосина или солярового дистиллята сравнительно легкого фракционного состава. [c.223]

    Автобензины каталитического крекинга имеют легкий фракционный состав и в нормальных условиях хранения достаточно химически стабильны. Бензины с концом кипения 2(Ю—210° и упругостью наров но Рейду 500—520 мм рт. ст. содержат ие менее 40% фракций, выкипающих до 100°, и имеют бромное число, обычно не превышающее 100. Удельный вес таких бензинов 0,730—0.745. Для примера в табл. 45 помещены результаты анализов нескольких образцов бензина с упругостью паров 517 жл. рт. ст. Дебута- [c.229]

    В крекинг-процессах при давлении от 14 до 70 ати и при любой конверсии за проход октановое число крекинг-бензина зависит главным образом от характеристики исходного сырья, поступающего на крекинг-установку. При получении крекинг-остатка с удельным весом 0,98—0,99 при конверсии за1 проход около 20% октановые числа крекинг-бензина, имеющего упругость паров по Рейду около 500 мм рт. ст. и конец кипения 205° С, приблизительно выражаются кривыми, изображенными на рис. 3. Газ, не содержащий фракции С4, получающийся при крекинг-процессах высокого давдения, имеет, примерно, следующий состав  [c.36]

    Термический риформинг является особым видом крекинг-процесса, имеюш им своей целью превращение низкооктанового лигроина в высокооктановые бензины. Повышая октановое число бензинов, этот процесс также сильно увеличивает их испаряемость. Риформинг особенно полезен для получения бензинов с изменяющейся в широком интервале упругостью паров, что особенно важнр в условиях сезонных колебаний температуры. [c.45]

    Для более высококипящих фракций, Сд —С . , гидрокрекинг может быть эффективным методом повышения октанового числа продукта без существенного снижения его выходов. За неимением соответствующих данных может быть сделан грубый расчет, дающий нриблизительное представление о зависимости между выходами и октановыми числами продуктов гидрокрекинга парафинистого сырья С — С . Например, такой расчет можно сделать для эквимолекулярной смеси парафиновых угловодородов Сд—С12, при этом допускается, что отщепление углеводородных осколков в виде метана и этана не имеет моста, все остальные связи в одинаковой мере участвуют в процессе гидрокрекинга, и концентрация изомеров в продуктах гидрокрекинга приближается к равновесной (практически в некоторых случаях это условие не соблюдается). Рассчитанный на основании этих допущений выход фракций С4—Сд составляет 102% от объема сырья, несмотря на образование одновременно значительного количества пропана. Рассчитанное октановое число фракции по исследовательскому методу без ТЭС в чистом виде порядка 70, а с добавкой тетраэтилсвинца — около 90. Если принять во внимание, что октановое число исходного сырья заметно ниже О, то вышенриведеиные расчеты свидетельствуют о значительном улучшении аитидетонациопных свойств продуктов гидрокрекинга. Однако продукт одной только реакции гидрокрекинга имол бы весьма ограниченное применение как вследствие недостаточно высокого октанового числа, так и вследствие чрезмерной упругости паров из-за высокого содержания фракции С4—Св. [c.176]

    Допустимая вакуумметрическая высота всасываиия зависит также от физических свойств перекачиваемой жидкости удельного веса, упругости паров, вязкости она зависит от технических данных иасоса — числа оборотов, подачи и от барометрического давления. [c.139]

    Терцовые уилотнеиия могут быть с внутренним и внешним расположением упругих элементов, по числу пар уплотняющих поверх- [c.145]

    Спецификации на реактивные топлива включают в себя большое число различных показателей. Стандартизованы пределы выкипания, плотность, которая характеризует парафинистость топлив, содержание смол и серы чтобы сократить потери при полетах на больших высотах, необходимо поддерживать низкую упругость паров, а для того чтобы предотвратить опасность застывания, топливо должно иметь низкую температуру застывания (ниже —60° С). Для того чтобы обеспечить работу в самых тяжелых условиях, необходимо, чтобы теплота сгорания топлива была выше 10200 ккал1кг, а наивысшее содержание ароматических углеводородов — 25% выдерживанием этого последнего требования достигается снижение дымности топлив. [c.447]

    Кроме того, опыт показывает, что нестабильность течения меньше у полимеров, макромолекулы которых имеют небольшое число длинноцепочечных разветвлений. Это, видимо, объясняется их склонностью к пластикации и меньшей долей эластически эффективных узлов в структурах, содержащих разветвленные макромолекулы, что способствует рассеянию энергии при деформации. Наличие в каучуках сильно структурированных (плотных) частиц также повышает стабильность течения смесей (но может ухудшать другие показатели), так как частицы нарушают регулярность сетки физических зацеплений и понижают ее способность к накоплению энергии внешней деформации. Например, при изучении вязко-упругих свойств акрилатных каучуков было показано, что разрушение структуры расплавов, усадка в формах и разбухание экструдатов резко уменьшается при введении в каучуки сильно сшитых частиц размером 50—300 нм [23]. При этом эластические эффекты определяются степенью структурирования частиц и мало зависят от их размеров. Аналогичные изменения, выразившиеся в уменьшении усадки и улучшении поверхности каландрованных изделий, наблюдали при введении частиц плотного геля в бутадиен-нитрильные каучуки [24]. На этом же принципе основано получение специального сорта НК с улучшенными технологическими свойствами [25]. [c.80]

    ЛИШЬ уменьшает общее число фотонов. По мере увеличения энергии падающих фотонов существенную роль начинает играть эффект Комптона. Фотон сталкивается с атомным электроном и претерпевает упругое рассеяние, при этом энергия падающего кванта распределяется между электроном отдачи и фотоном рассеяния. Возникающий электрон отдачи в свою очередь вызывает ионизацию вещества. В случае эффекта Комптона общее число фотонов остается неизменным, хотя энергия их уменьшается (увеличивается длина волны X) и, кроме того, изменяется направление их движения. Эти рассеянные фотоны также могут вызывать чонизацию вещества. Вероятность комп-тоновского взаимодействия зависит от числа электронов, приходящихся на единицу площади поперечного сечения вещества. [c.260]

    Большое значение придавалось отбору и подготовке проб. Для предотвращения потерь легких фракций был сконструирован специальный пробоотборник. В случае отдельных пластов, горизонтов и сортов пробы отбирались с учетом дебита скважин и привлечением промысловых геологических управлений. При высоком содержании влаги (1 %) нефть предварительно подвергалась деэмульсации нли дегидратации. Определялись плотность, вязкость,, молекулярная масса всех нефтей и нефтепродуктов, рефракция нефтепродуктов и узких фракций, температура вспышки и истинная температура кипения нефтей и отдельных фракций, кислотность нефтей, температура застывания мапутов, упругость насыщенных наров бензинов, октановые числа и приемистость к ТЭС бензинов. Изучался потенциальный выход бензина, лигроина, керосина в нефтях. Останавливалось содержание смол, твердого парафина, нафтеновых кислот, кокса в нефтях и фракциях, общей серы и азота в нефтях, тяжелых нефтепродуктах и бензинах. Фактический материал был получен классическими в то время методами, применявшимися для исследования нефтей и нефтепродуктов во всем мире, на основе стандартов и официальных руководств, действовавших в Советском Союзе, и с использованием многолетнего опыта АзНИИ НП в области нефтяного анализа. [c.7]

    Упругое поведение является наиболее характерной реакцией вещества Земли на механические воздействия в широком интервале напряжений, температур и длительности действия сил. Высокая упругость пород коры и мантии при сжатии и сдвиге в динамическом режиме проявляется в распространении сейсмических волн, а при более длительных нагрузках —в чандлеровских колебаниях полюсов и земных приливах. Упругие свойства твердых тел полностью описываются набором независимых упругих констант, число которых определяется степенью анизотропии и для изотропных кристаллов или агрегатов равно двум. [c.85]

    Первый из указанных недостатков частично устраняется применением упругих формователей (например, в виде наполненных газом резиновых оболочек, упругих элипсоидов вращения) или использованием в качестве формователей газовых пузырьков, движимых давлением осаждающей жидкости. Толщина получаемой в этих случаях мембраны зависит от вязкости формовочного раствора, скорости движения и упругости формователей, поэтому трудно регулируема. Нанесение формовочного раствора напылением, в том числе в электростатическом поле, обеспечивает получение мембраны более равномерной толщины по длине трубчатой поверхности. Такие мембраны менее требовательны к [c.128]

    Затяжка гаек с приложением крутящего момента имеет ряд недостатков, в том числе необходимость преодоления значительных сил трения. Этот недостаток устраняется при использовании гидравлических теисеров — устройств для упругого растяжения болта (шпильки). Гидротенсер состоит из резьбовой втулки для захвата резьбового конца шпильки, упорной втулки, гидро-114 [c.114]

    Выверка оборудования может осуществляться с помощью фундаментных, в том числе и самоанкерирующихся, болтов. Для этого на болт устанавливается дополнительная установочная гайка с эластичной прокладкой. Оборудование опирается на эластичную прокладку. Предварительная регулировка положения оборудования по высоте осуществляется вращением установочных гаек, а тонкая регулировка — сжатием упругой прокладки усилием предварительной затяжки крепежных гаек. После подливки и твердения бетонной смеси крепежные гайки затягиваются окончательно. [c.301]


Смотреть страницы где упоминается термин Упругое число: [c.248]    [c.158]    [c.6]    [c.176]    [c.146]    [c.425]    [c.88]    [c.64]    [c.85]    [c.49]    [c.132]    [c.10]   
Трение и смазка эластомеров (1977) -- [ c.158 ]




ПОИСК







© 2025 chem21.info Реклама на сайте