Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структурные переходы

    Рассмотрим теперь данные по равновесным смесям изомеризации нафтенов. Ограничившись наиболее важной реакцией сужения—расширения цикла, не будем рассматривать изомеризацию, связанную с миграцией или изменением числа алкильных заместителей при сохранении структуры цикла. Для перехода от циклогексановых к циклопентановым углеводородам термодинамически благоприятны высокие температуры, и в этом существенное отличие изомеризации нафтенов от изомеризации парафинов. Если структурно переход от нормального к изопарафину подобен переходу от шестичленного к пятичленному нафтену (в обоих случаях в углеродной цепп вместо вторичного появляется третичный атом углерода), то термодинамические характеристики этих процессов различны. Изомеризация парафинов протекает с небольшим выделением тепла, уменьшением энтропии с ростом температуры Кр этой реакции уменьшается. Структурно близкая изомеризация циклогексанов в циклопентаны протекает, наоборот, с поглощением [c.128]


    Вопрос. В результате полного гидролиза целлюлозы и амилозы образуется О-глюкоза. Напишите структурные формы обоих полимеров и охарактеризуйте общие и отличительные особенности их структуры. Возможен ли взаимный структурный переход амилозы в целлюлозу К какой группе пространственных изомеров их можно отнести к конфигурационным или к конформационным  [c.79]

    Процессы, протекающие при синтезе углеродных композитов с тугоплавкими наполнителями, сопровождаются различными сложными химическими реакциями и структурными переходами, знание которых необходимо для целенаправленного проведения технологического процесса получения материалов. [c.196]

    Однако, хотя детали надмолекулярной организации или релаксационные характеристики влияют —и подчас решающим образом—на электрическую прочность полимеров, вряд ли можно рекомендовать само свойство электрической прочности применять для исследований структуры или структурных переходов. Для этого, как мы видели, есть более прямые и эффективные методы. Задача должна ставиться наоборот зная все структурные и релаксационные факторы, влияющие на электрическую прочность, следует выбирать оптимальные структуру и условия для технической эксплуатации полимеров как диэлектриков. [c.263]

    На температурной зависимости интенсивности РТЛ могут возникнуть один или несколько максимумов, что указывает на наличие одного или нескольких типов ловушек в данном облученном веществе. Для неорганических веществ эти максимумы в общем случае не связаны с их молекулярной подвижностью. Характерной особенностью РТЛ органических веществ, в первую очередь полимеров, является то, что максимумы свечения на кривой РТЛ находятся в тех интервалах температур, где имеют место различные кинетические и структурные переходы, обусловленные размораживанием подвижности отдельных звеньев и сегментов макромолекул, а также молекулярным движением в некристаллических и кристаллических областях полимера. Интенсивность РТЛ существенно увеличивается, когда возникает подвижность отдельных частей макромолекул. При этом характер температурной зависимости интенсивности РТЛ связан с особенностями структуры полимеров и термомеханической предыстории образцов [9.1]. Для некристаллических полимеров на графиках зависимости интенсивности I излучения от температуры появляются максимумы в областях кинетических переходов. В случае кристаллических полимеров соответствующие максимумы на кривых 1 = 1(Т) появляются в областях кинетических и фазовых переходов, а также и полиморфных превращений. [c.235]


    Метод РТЛ позволяет изучать механизм радиолиза полимеров и явления термолюминесценции, а также типы ловушек и особенности захвата зарядов. С помощью метода РТЛ можно определять значения температур структурных переходов (температуры стеклования, плавления и т. д.) в интервале 77—300 К и производить анализ формы максимумов на кривой высвечивания РТЛ, что дает возможность оценить характер структурного перехода. Можно также определять энергию активации процесса молекулярного движения, так как максимумы, расположенные в области релаксационных переходов, при увеличении скорости разогрева смещаются в сторону высоких температур. Метод РТЛ позволяет исследовать степень однородности двухкомпонентных смесей высокомолекулярных соединений и определять, совместимы или не совместимы разные полимеры. С помощью метода РТЛ можно производить также анализ многокомпонентных смесей полимеров, содержащих низкомолекулярные наполнители. [c.235]

    Наибольшая интенсивность свечения для полимеров приходится на видимую часть спектра (Я = 450 550 нм) в широком интервале температур (от 77 до 350 КЬ Интенсивное излучение имеется и в ультрафиолетовой области спектра. Совпадение максимумов на кривой высвечивания облученного полимера с областями размораживания его молекулярной подвижности и со структурными переходами указывает на то, что рекомбинация зарядов при разогреве полимерного образца определяется не термическим высвобождением их из ловушек, а самой молекулярной подвижностью. Оценка оптическими методами глубины электронных ловушек в облученных полимерах показывает, что термическое высвобождение электронов из таких ловушек, какими являются для них связанные радикалы, может начаться лишь при очень высоких температурах 7 >500 К. [c.238]

    Совпадение максимумов свечения на кривой РТЛ с областями кинетических и структурных переходов в полимерах дает основание считать, что акты рекомбинации зарядов осуществляются за счет размораживания теплового движения кинетических единиц, на которых находятся электронные ловушки или центры свечения. При этом время жизни электрона в ловушке определяется временем релаксации той кинетической единицы, на которой находятся связанные электроны. [c.242]

    Предельные поверхности разрущения зависят от времени действия напряжений, температуры и других немеханических факторов (окружающая среда, облучение, структурные переходы и т. д.). Такие зависимости особенно характерны для полимеров, и, поэтому исследование физики и физико-химии разрушения составляет для полимеров специфическую задачу. [c.286]

    Ступенчатый характер тепловой денатурации лизоцима был также обнаружен в работе [72] при изучении оптической плотности растворов лизоцима в процессе его нагревания от 20 до 90° С наиболее выраженные изменения оптической плотности наблюдались около 50° и при 75—77° С [72, 73], что в целом согласуется с данными по ультразвуковой инактивации лизоцима (см. рис. 19). Тот факт, что в интервале температур 60—75° С наблюдается резкое уменьшение а-спиральности лизоцима (от 31 до 15%), также согласуется с наличием конформационного перехода лизоцима при 7ГС, обнаруженного с помощью ультразвуковой инактивации (см. рис. 19). Об этом же свидетельствуют и данные по изучению лизоцима, полученные методом дисперсии оптического вращения )[74, 75], по которым структурный переход фермента в нейтральной области pH происходит в температурном интервале 75—80° С. [c.162]

    В работе [35] при изучении термической денатурации лизоцима методами дифференциальной сканирующей калориметрии нашли, что этот процесс происходит при 74 1°С (ДЯ=120 10 ккал/моль, А5 = 350 э. е.), что почти совпадает с данными для третьего конформационного перехода лизоцима (см. рис. 19), выявленного с помощью ультразвуковой инактивации (71° С, ДЯ=110 ккал/моль, А5 = 320 э. с.). Следует, однако, подчеркнуть, что методы оптического поглощения или дисперсии оптического вращения дают информацию о состоянии всей глобулы фермента в целом, в то время как метод ультразвуковой инактивации отражает конформационное состояние активного центра. В любом случае наличие целого ряда структурных переходов молекулы лизоцима и его активного центра при температурах выше 20° С показывает, что распространение выводов рентгеноструктурного анализа лизоцима, как и других методов структурного анализа фермента, на иные условия следует проводить с достаточной осторожностью. [c.162]

    Метод сопоставления экспериментальных кривых интенсивности с теоретическими, вычисленными по формуле (2.107), был использован Н. А. Ватолиным и Э. А. Пастуховым при исследовании структурных превращений в жидком железе, никеле и кремнии. Установлено, что в жидком железе возможен полиморфизм при 1550°С упаковка атомов в расплаве соответствует объемно-центрированной решетке, а при 1700°С размещение атомов в нем описывается кубической гранецентрированной структурой. В никеле и кремнии структурный переход происходит в процессе плавления этих веществ. [c.60]


    Коэффициенты теплового расшире ия материалов определяются при помощи дилатометров. Дилатометрические испытания полимерных материалов, как известно, позволяют определять также температуры структурных переходов типа стеклования или кристаллизации, а также объемные эффекты, сопровождающие структурные переходы. [c.126]

    V некоторых синтетических полипептидов наблюдаются структурные переходы в растворе, когда изменяется температура или pH. Как видно нз рис, 20,4, отдельная цепь полипептида может существовать в растворе в трех состояниях. [c.605]

    Первым структурным переходом (шаг 1) на схеме помечена схематизация процесса. Результатом работы данной подсистемы является гистограмма частот размахов уровней величины аварийности на объектах нефтегазодобычи. [c.145]

Рис. 54. Структурные переходы от /пранс-ретинола к транс- и <мс-ретиналю Рис. 54. <a href="/info/374942">Структурные переходы</a> от /пранс-ретинола к транс- и <мс-ретиналю
    Наличие дефектов оказывает влияние на фундаментальные свойства твердых тел теплопроводность, электрическую проводимость, магнитные, оптические и механические свойства, температуру плавления и структурных переходов и др. Естественно, что н реакционная способность твердых веществ в значительной мере определяется наличием дефектов. Можно утверждать, что химия твердого тела — это химия дефектов, которые облегчают возникав [c.48]

    Для сопоставления механических релаксационных переходов, наблюдаемых на спектрах внутреннего трения, и структурных переходов, наблюдаемых на температурных зависимостях объема, энтальпии или теплофизических свойств (коэффициента теплового расширения, теплоемкости и др.), необходимо выяснить связь между частотой механических воздействий V и скоростью нагревания ш (охлаждения д). [c.228]

    Структурные состояния и свойства нитрида алюминия могут существенно изменяться в зависимости от внешних условий. Так, при приложении внешнего давления (-22,9 ГПа) можно реализовать [49] структурный переход типа вюртцит — каменная соль, который сопровождается уменьшением объема ячейки на 17,9 %. [c.10]

    Большие деформации кристаллических полимеров—высокоэластические, так как они связаны с изменением при структурном переходе ориентации полимерных цепей и пачек. [c.68]

    Рассмотрим, в какой мере характеристики прочности являются структурно-чувствительными и на каком уровне изменения структуры меняются параметры рассмотренных уравнений. В качестве примера используем сравнительное исследование долговечности и разрушающего напряжения аморфного линейного полимера — полистирола, которое проводилось на пленках и интервале температур 293—373 К. В этом интервале наблюдается структурный переход от стеклообразного состояния к высокоэластическому. [c.239]

    При помощи коллоидной гипотезы о структуре битумов можно было найти объяснение их фактическому поведению в различных условиях [ 2]. Из> чеиие процесса полу чецня битумов [14] показало наличие в нем двух структурных переходов типа стеклования - высокотемпературного и низкотемпературного. Переходы были обнаружены на основе анализа термодинамических функций состояния удельного объема V и теплоемкости Сз в зависимости от температуры. Было сделано предположение. [c.30]

    При введении в углеводородную матрицу депрессорной пpи aдки( J.H ,,)2N N в различных концентрациях на термограмме не проявляется дополнительных пиков по отнотпению к термограмме чистой смеси, что свидетельствует о сокристаллизации молекул нормальных парафинов и депрессорной присадки на стадии образования и ро-сга надмолекулярных структур с сохранением кристаллической решетки совершенного типа, без дефектов и искажений. Отсутствие размывания пиков на термограмме свидетельствует о структурных переходах в системе без образования переходной сорбционно-сольватной фазы. Можно предположить в случаях повышенных концентраций присадки наличие инверсии кристаллической структуры за счет взаимного перехода и переориентации структур, создаваемых молекулами нормальных парафиновых углеводородов и поверхностно-активного вещества. При этом межмолекулярные взаимодействия в элементарной ячейке системы практически не изменяются. [c.162]

    Для нахождения рациональных путей использования органической части киров месторождения Иманкара совместно с БашНИИ НП были изучены ее свойства вязкость, температуры структурных переходов и диэлектрические характеристики. [c.130]

    СКЛЁИВАНИЕ, метод получения неразъемного соединения (клеевого соединения) деталей, основанный на адгезии клеевой прослойки и склеиваемого материала. Клеевая прослойка формируется из клея (см. Клеи неорганические. Клеи природные. Клеи синтетические, Резиновые клеи) путем заполнения им зазора между соединяемыми деталями и образует самостоят. фазу. Если имеет место (напр., вследствие диффузии клея) непрерывный структурный переход между соединяемыми материалами, то правильнее говорить не [c.362]

    Особо следует подчеркнуть роль Т. в структурных исследованиях индивидуальных в-в в конденсир. состоянии и р-ров. Величины, являющиеся второй производной потенциалов Гиббса илн Гельмгольца по параметрам состояния (а Т. относится к таковым), весьма чувствительны к структурным изменениям системы. В твердых телах и сплавах при фазовьгх переходах 2-го рода типа порядок-беспорядок наблюдаются Х-образные скачки Т. В жидкостях такие скачкн имеют место вблизи критич, точек равновесия жидкость-газ и жидкость-жидкость (см. Критические явления). В жидкости, напр., при нагр. часть энергии может идти не на возбуждение новьгх степеней свободы молекул, а яа изменение потенц. энергии взаимодействующих молекул. Этот вклад наз. конфигурационной Т. она связана с характером мол. упорядочения в жидкостях и р-рах. В биохимии политермич. измерения Т. дают информацию о структурных переходах в белках. [c.524]

    Т. полимеров-чувствит. метод изучения разл. типдв сегментальной подвижности и релаксац. процессов, диффузии низкомол. примесей, структурных переходов и т.п. Лучше всего исследована радиотермолюминесцешщя полимеров (метод РТЛ), стимулированная у-квантами или быстрыми электронами при т-ре жидкого азота (77 К). Поскольку вид кривой РТЛ зависит от структуры и предыстории образца, метод РТЛ используют при исследовании вулканизации, пластификации, ориентации полимеров и т. п. Изучение РТЛ в поле мех. напряжений позволяет выяснять мол. механизм вынужденной высокоэластичности. Положение максимумов на кривой РТЛ служит для определения состава и однородности смесей полимеров напр., наличие полиэтилена, натурального или изопренового каучука в многокомпонентных смесях удается обнаруживать при их содержании 1-2%. [c.542]

    Вторым структурным переходом (щаг 2) является выбор плотности распределения рисков аварийности объектов нефтегазодобычи. Результатом работы данной подсистемы является график плотности и функция распределения аварийности объектов нефтегазодобычи. Плотность распределения строится на основе гистофаммы частот. [c.145]

    Существующие экспериментальные методы дают, как правило, толью интегральные характеристики ротационных кристаллов параметры кристаллической решетки, энергетические характеристики фазовых переходов, усредненные характеристики подвижности отдельных атомных групп. Эти данные могут служить основой для построения детальных молекулярно-динамических моделей [88]. Имеющиеся теоретические расчеты относятся, прежде всего, к качественной интерпретации структурных переходов в н-парафинах [322]. Попытка построить простейшую термодинамическую модель, позволяющую рассчитать зависимость критичесюй температуры от длины цепи для структурных переходов в кристаллах н-пара-финов, была предпринята в работах В. В. Гинзбурга и Л. И. Маневича [c.91]

    При рентгеноструктурном исследовании соединений Hg3NbFg и Hg3TaFg [139] обнаружены плотноупакованные слои MFg -октаэд-ров, разделенных гексагональными слоями атомов ртути (рис.62). Каждый атом ртути имеет щесть ближайших соседей на расстояниях 2,90А в пределах Hg-слоя и три атома фтора от каждого соседнего MFg-слоя на расстоянии 3,2А. Атомы ртути и фтора образуют кубическую плотнейшую упаковку с чередованием слоев. ..Hg-F-F-Hg..., в которой атомы М занимают 1/3 октаэдрических пустот между этими слоями. Расстояния Hg-Hg в слоях ртути длиннее, чем в цепочках, где атомы ртути связаны только с двумя соседями, но короче, чем в элементарной ртути, где у каждого атома металла 10 или 12 соседей. Следует отметить, что серебристые кристаллы при 120"С быстро переходят в золотистые, таким образом можно констатировать факт обратимого структурного перехода цепочечная слоистая структура в присутствии жидкого SO2, роль которого в этом переходе до конца не ясна (при комнатной температуре и ниже и в отсутствие SO2 такой переход не происходит). [c.124]

    Эффектором в зрительном рецепторе является светопоглощающая группировка - белок родопсин с простетической группой - 11-цыс-рети-налем, который образуется из витамина А (транс-ретинола). В клетках спиртовая группа ретинола превращается в альдегидную, затем ретиналь-изомераза превращает его в цмс-форму. Ниже показаны структурные переходы от Апрднс-ретинола (витамина А) к транс- и цмс-ретиналю (рис. 54). [c.110]

    Рассмотрим в качестве примера механические а- и р-про-цессы релаксации в полибутадиенметилстироле (сшитом СКМ.С-10). Температуры структурных переходов при стандартной скорости нагревания ш = 1 К-мин равны для а-процесса температуре структурного стеклования Гст =197 К, а для р-процесса Гр = 105 К. По данным релаксационной спектрометрии на рис. IX. 11 приведена зависимость 1/Г( -10 от 1ду, а аналогичная зависимость (рис. IX. 15) для р-перехода рассчитана по уравнению (IX. 53) при Ур = 30,5 кДж-моль- и В = 2-10 с. На рис. IX. 15 для а-процесса прямая 2 дает значение обратной температуры структурного размягчения 1/Гр, а кривая 1 означает зависимость (IX. 53) для а-процесса (температуры механического размягчения — стеклования). При некоторой низкой частоте кр, равной эквивалентной частоте по формуле (IX. 62), температуры механического н структурного размягчения [c.233]

    Варшавский и Евдокимов изучали расплетание ДНК методом теплового удара. Раствор ДНК нагревался от 5 до 20°С в течение 0,5 с. Кинетические кривые свидетельствуют о наличии не меноё двух стадий структурного перехода. В первой, быстрой, стадии исчезает почти весь гипохромный зффект. По-видимому, на этой тадии образуются неподвижные петли, полное расплетание которых происходит па второй стадии. Скорость расплетания с/геду-ет уравнению Аррениуса (с. 173), энергия активации процесса сильно зависит от pH, имея максимальное значение при промежуточных pH. [c.244]

    В работах Блюменфельда и сотрудников были установлены 1 онформационные превращения в мембранах митохондрий (с помощью спектров ЭПР спин-меченых мембран, с помощью спектров люминесценции и т. д.). Доказана высокая кооперативность этих превращений и наличие термических структурных переходов в СМЧ. [c.439]

    Варшавский и Евдокимов изучали расплетание ДНК методом теплового удара (ср. стр. 474). Раствор ДНК в течение 0,5 сек нагревался на 5—20°С (в зависимости от ионной силы). Кинети ческие кривые свидетельствуют о наличии двух или даже трех стадий структурного перехода. В первой, быстрой, стадии возникает почти весь гиперхромный эффект. Полупериод всего перехода меняется в зависимости от условий в пределах от нескольких секунд до нескольких десятков секунд. Константа скорости следует уравнению Аррениуса. Расплетание спирали происходит с наибольшей скоростью при экстремальных pH — зависимость энергии активации от pH колоколообразна. Максимальное значение Е = 170 ккал/лоль отвечает pH 7,5 (ионная сила 0,18—0,25) оно падает до 20—25 ккал/моль при pH 3 и 10,5, Авторыинтер-претируютпервуюстадию как образование неподвижных петель и считают, что полное расплетение происходит во второй стадии. Время расплетания возрастает с увеличением молекулярного веса. Полученные результаты показывают, что характер зависимости т от М определяется ионной силой раствора, числом и распределением разрывов цепей [127—129]. [c.524]

    Кроме этого, на кривых наблюдаются либо изломы, либо точки экс-тремума, что свидетельствует о структурных переходах в мембране в соответствуюших точках. [c.567]

    Диоксид кремния ЗЮ2 существует в виде многих полиморфных кристаллических модификаций (ПМ), образование которых определяется термодинамическими условиями [1—8]. При нормальном давлении известны три устойчивые модификации 8102— кварц, кри-стобалит, тридимит, для которьге, в свою очередь, вьщеляют низко-(а) и высокотемпературные (р) фазы. Структуры большинства ПМ 5Ю2 составлены базисными полиэдрами — тетраэдрами 8Ю4, сочлененными таким образом, что каждый атом кислорода является общим для двух тетраэдров, что соответствует стехиометрическому составу диоксида. Структурные переходы а р для каждой из ПМ обратимы и осуществляются достаточно легко наоборот, фазовые превращения между упомянутыми модификациями 8102 существенно затруднены [5—1 Кроме перечисленных, известны ПМ 8102, которые могут бьггь получены при высоких давлениях кеатит, коэзит и стишовит. Две первые из них подобны равновесным формам ЗЮг и содержат различным образом упакованные искаженные тетраэд- [c.151]

    Раствор-расплавным методом можно выращивать более совершенные кристаллы титаната стронция, чем это возможно в печах вернейля. Основанием для постановки таких экспериментов является Научный интерес к титанату стронция, в котором проявляется необычный структурный переход при охлаждении до низких температур. Дефекты в кристаллах влияют на замерьг физических свойств и могут затущевывать эффекты, интересные для изучения. Большинство Почти совершенных кристаллов титаната стронция выращены из Растворов в расплавах смесей фторидов калия и лития или боратов Стронция и лития, [7]. Получают кристаллы размером до 12x11x9 мм. [c.93]

    Соотношение между структурой и транспортными свойствами Bi ,9Pbo,2x х8г 9 xLax uOz изучено при вариации температуры методами рентгеновской дифракции и термо-э.д.с. Экспериментальные данные показали, что структурные переходы тетрагональной и орторомбической фаз имеют место ниже 200 К в образцах с j < 0,5. Аномалии в термо-э.д.с. наблюдались внутри температурной области структурного перехода [67]. [c.246]


Библиография для Структурные переходы: [c.312]    [c.312]   
Смотреть страницы где упоминается термин Структурные переходы: [c.196]    [c.255]    [c.259]    [c.255]    [c.76]    [c.67]   
Энциклопедия полимеров Том 2 (1974) -- [ c.124 , c.127 , c.129 ]

Энциклопедия полимеров Том 3 (1977) -- [ c.2 , c.124 , c.127 , c.129 ]

Энциклопедия полимеров Том 2 (1974) -- [ c.124 , c.127 , c.129 ]

Энциклопедия полимеров Том 3 (1977) -- [ c.2 , c.124 , c.127 , c.129 ]




ПОИСК







© 2025 chem21.info Реклама на сайте