Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Работа эквиваленты

    IV — бесконечно малое количество работы (эквивалент б Ж)  [c.10]

    При переходе теплоты с производством работы эквивалентом произведенного количества работы является, по теории Карно, падение неизменного количества теплоты с более высокой температуры на более низкую. Но что же служит эквивалентом падения того же количества теплоты, когда оба источника теплоты соединены теплопроводящим прутом Может ли бесследно исчезнуть способность теплоты производить работу при ее падении  [c.147]


    В уравнении (I, 1) знак обозначает интегрирование ио циклу. Постоянство коэффициента отражает эквивалентность теплоты и работы J—механический эквивалент теплоты.). Уравнение (I, 1) выражает собой закон сохранения энергии для частного, очень важного случая превращения работы в теплоту. [c.30]

    Наиболее часто в химической термодинамике рассматривается работа электрического тока гальванического элемента А =гРЕ (Е—электродвижущая сила, число Фарадея и г—число грамм-эквивалентов). Величина А охватывает также работы поднятия тяжести, увеличения поверхности фазы и др. [c.117]

    Работа электрического тока выражается произведением количества прошедшего по цепи электричества на напряжение. В медно-цинковом элементе при окислении одного эквивалента цинка и одновременном восстановлении одного эквивалента ионов меди по цепи пройдет один фарадей (/ ==96 485 кулонов ) электричества. [c.275]

    Для этого предельного случая полезная работа, производимая электрическим током в медно-цинковом элементе при взаимодействии одного эквивалента цинка с одним эквивалентом ионов меди, выразится уравнением [c.276]

    Одновременно с этим в Англии Джоуль проводил в сущности те же эксперименты и встретился с теми же безразличием и недоверием. Джоуль был сыном пивовара и учился у Дальтона. В возрасте 19 лет он занялся созданием электрических двигателей и генераторов, намереваясь перевести отцовскую пивоварню с паровой энергии на электрическую. Эти попытки оказались бесплодными, но Джоуль заинтересовался взаимосвязью между работой, затрачиваемой на вращение динамомашины, вырабатываемым электричеством и теплотой, которая выделялась за счет электричества. Позже он исключил из этой цепочки электричество и занялся изучением теплоты, образующейся при механическом перемешивании воды лопатками, которые приводились в движение падающим грузом (рис. 15-1). Подобно Майеру, Джоуль обнаружил, что такие измерения очень трудны, потому что они связаны с весьма незначительными изменениями температуры. Несмотря на это, он получил для механического эквивалента теплоты значение 42,4 кг см кал S которое всего на 1% отличается от принятого в настоящее время значения 42,67 кг см кал Это означает, что груз ве- [c.8]

Рис. 15-1. Схема прибора, использовавшегося Джоулем для определения механического эквивалента теплоты. Зная вес металлического груза и расстояние, пройденное им при падении, можно вычислить работу по перемешиванию воды лопатками мешалки. Повышение температуры воды измеряют чувствительным термометром. Поскольку к нагреваемым веществам следует отнести неподвижные выступы сосуда и лопасти мешалки, а также воду, прибор следует предварительно Рис. 15-1. <a href="/info/855414">Схема прибора</a>, использовавшегося Джоулем для <a href="/info/858458">определения механического эквивалента теплоты</a>. Зная вес металлического груза и расстояние, пройденное им при падении, можно вычислить работу по <a href="/info/339065">перемешиванию воды</a> <a href="/info/147557">лопатками мешалки</a>. <a href="/info/263083">Повышение температуры воды</a> <a href="/info/1724954">измеряют чувствительным</a> термометром. Поскольку к нагреваемым <a href="/info/481953">веществам следует</a> отнести неподвижные выступы сосуда и <a href="/info/147561">лопасти мешалки</a>, а <a href="/info/172151">также воду</a>, <a href="/info/392636">прибор следует</a> предварительно

    Сумма удельных тепловых потоков, подводимых к рабочему телу АХМ (если пренебречь тепловым эквивалентом работы насоса) равна  [c.190]

    Системы, рассматриваемые в процессах переработки газов, являются движущимися (потоки газа и жидкостей), поэтому при их изучении удобно рассматривать скорость передачи энергии. Например, мы редко измеряем работу, по довольно часто пользуемся эквивалентным ей понятием мощности, которая является нормой времени для выполнения работы. Имея дело с передачей механической мощности и тепла, следует помнить, что они фактически эквиваленты, так как работа может превращаться в тепло и наоборот. Поэтому их можно выразить в эквивалентных единицах. Если тепло выражается, например, в единицах работы или мощности, то буквенные обозначения должны содержать единицу времени. [c.105]

    В табл. 13.3 представлены совокупные данные различных оценок ТНТ-эквивалента для случая аварии в Фликсборо. По мнению автора настоящей работы, наиболее соответствует истине значение 32 т для случая наземного взрыва. Однако возникают вопросы, связанные с асимметрией картины разрушений, хорошо заметной на рис. 13.22 (разд. 13.16). [c.344]

    Работы в этом направлении еще только начинают развиваться. Заметим, что задача подбора коэффициентов в кинетических уравнениях математически полностью эквивалента задаче подстройки [c.86]

    При вычислениях разность показаний интегратора во время восстановления и окисления ((Эвос—Qok) умножают на эквивалент (мг Ри/в) и увеличивают в 10 раз для получения исходного количества плутония в образце. В этой работе эквивалент выбранного диапазона прибора был установлен электрической калибровкой и составлял 8,1875 к/в или 10,14 мг/в плутония для данной двухэлектронной реакции. [c.237]

    Во всех случаях следует проводить холостой опыт с применяемым растворителем. При этом берут такое же количество фенолфталеина, как и при титровании исследуемой кислоты. При обычной технике выполнения работы эквивалент нейтрализации определяют с точностью 1%. Если использовать хорошо очищенные и высушенные образцы и очень тщательно проводить титрование, то ошибку определения можно уменьшить до zf 0,3%. [c.309]

    Из писем Лораиа к Жера.ру можно прийти к выводу, что Лоран еще в 1844 г. признал новые эквиваленты Жерара, несмотря на то, что до апреля 1845 г. применял в своих работах эквиваленты Дюма [144, т. 1, стр. 8, 42]. Это отношение Лорана объясняется тактическими соображениями, ибо больше всего нареканий вызывала со стороньг химиков попытка заменить привычные эквиваленты новыми. Лоран считал, что главное внимание надо обратить на химические формулы, исходя из правила четности атомов , установленного Жераром. Он писал Жерару Не можете же Вы удовлетвориться тем, что Вы будете говорить, видя какую-нибудь формулу Она неверна , без того, чтоб указывать на то, что Ваши эквиваленты привели Вас к этому выводу [144, т. 1, стр. 26]. [c.239]

    При переходе теплоты с производством работы эквиваленто произведенного количества работы является, согласно теории Карно, падение нeиз eннoгo количества теплоты с более [c.142]

    Одной из причин случайных ошибок могут быть качества самого экспериментатора скорость его реакции, острота зрения, правильность цветовосприятия, степень осязания и другие факторы, в том числе неопытность, неумение работать с приборами, незнание правил измерений. Например, объемы прозрачной жидкости, смачивающей стекло, отмеряются в мерных колбах, пипетках и бюретках по нижнему краю мениска, а непрозрачной — по месту соприкосновения жидкости со стеклом. Из-за незнания этого опытный и неопытный экспериментаторы приготовят различные по концентрации растворы, получат различающиеся результаты титрования и в конечном итоге это скажется на выводах из эксперимента. При работе с термометром, цена деления которого 0,1°, показание следует записывать не с точностью до О, Г, а с той точностью, которая может быть получена при делении на глаз одного малого деления, скажем на 5 частей, т. е. до 0,02° (в эксперименте по криоскопическому определению степени диссоциацнп и молекулярной массы). То же самое относится и к снятию показаний в газовой бюретке при определении объема водорода (в работе Эквивалент ) или при работе с рН-метром или потенциометром. Следует снимать показания с той максимальной точностью, которая доступна данному экспериментатору. Очевидно, что в такого рода экспериментах конечные результаты будут зависеть от остроты зрения человека. [c.47]

    Три Ро > 0,1 можно ограничиться одним членом ряда Nu = .i —При Fo > 1 Nu л в случае Bi = = оо Nu — 5,78 такое значение Nu было получено в работе [56]. Приведенные выше формулы можно применять и для расчета теплообмена с плотным слоем при безградиентном (стержнеподобном) его движении по трубе (при п > 10) без продувки газом или при параллельном движении газа. При этом в первом приближении коэффициенты теплопроводности и пристенной теплоотдачи принимаются такими же, как для стационарного слоя, а в критерии Fo учитываются водяные эквиваленты обеих движущихся фаз. [c.140]

    В технических расчетах величину теплового эквивалента работы электрического тока обычии принимают равной 2,4 10 . [c.256]

    Прямой правило 36 Работа 19 единицы измерения процесса 19 адиабатического 70 изобарического 78 изотермического 68 изохо1>ического 80 политропического 70 электролиза 251 тепловой эквивалент 21 тока 251 Равновесие законы [c.394]


    Асфальтены, карбоиды и карбены получаются при продолжении этих реакций. Если конденсация протекает между различными молекулами, то молекулярный вес быстро меняется, и кислород или его эквивалент сера могут остаться в положениях, допускающих оксониевый тип соединений с хлоридами железа и ртути и с серной кислотой, как показал Маркуссон. Насколько высоким может быть молекулярный вес этих соединений и других членов этого ряда, еще недзвестно. Работа в лаборатории автора на неразогнанных нерастворимых в пентане осадках дала максимальное значение порядка 40 ООО. Другие расчеты дали величину порядка 140 000 [33]. Вышеизложенные предположения о роли кислорода могут быть подтверждены или опровергнуты тщательным кинетическим изучением распределение кислорода в конечных продуктах наблюдалось (Кнотнерусом (Knotnerus [34]). [c.543]

    Детонационные характеристики некоторых парафиновых углеводородов приводятся в работе Ловеля, Кампбеля и Бойда. Выраженные в анилиновых эквивалентах, они представлены в таблице (см. табл. 2). [c.316]

    Поскольку уравнения (V,26) и (V,27) являются приближенными, было проведено численное решение уравнений (V,19) и (V,20) относительно области PQSRO (рис. V,3) для граничных условий, заданных выражениями (V,21)—(V,23). Все уравнения были преобразованы в безразмерную форму путем введения Р/ = PfIPpga и г/ = у1а, г = г а (или х = ж/а) в этом случае уравнение (V.23) принимает вид dpfldy = 1. Эквиваленты конечных разностей для результирующих уравнений приведены в цитируемой работе Стюарта . При расчете по этим уравнениям на вычислительной машине были получены значения р и определена скорость и по уравнению [c.187]

    В конце XVIП и начале XIX века учеными были определены относительные весовые количества, в которых соединяются между собой различные элементы в результате было установлено понятие химического эквивалента и определены относительные веса атомов различных элементов. В развитии этих понятий большая роль принадлежит работам Дальтона. Эти работы дали возможность характеризовать количественный состав веществ их атомным составом и химическими формулами. В начале XIX века атомистические представления получили уже широкое признание. Однако существование молекул, несмотря на работы Авогадро (1810) и Ампера (1814), получило широкое признание только в 1860 г., когда Международный съезд химиков принял по докладу Канниццаро решение различать понятия атома и молекулы. [c.25]

    Будет полезным сравнить время действия двух различных типов взрыва. Для начала возьмем тринитротолуол (ТНТ) приняв скорость взрывной волны равной 7400 м/с (табл. 2 работы [Robinson,1944]), массу полусферы ТНТ равной 32 т и, следовательно, диаметр равным 4,4 м, получим, что при детонации необходимо примерно 0,625 мс для того, чтобы процесс достиг наиболее удаленной точки полусферы. Взрыв в Фликсборо оценивается примерно в 32 г ТНТ-эквивалента, при этом диаметр облака составил примерно 200 м. (Чтобы убедиться в справедливости указанных цифр, рекомендуем обратиться к описанию аварии в гл. 13.) Если даже допустить, что скорость распространения взрывной волны равнялась скорости звука в воздушной среде, то продолжительность взрыва составит 650 мс. Иначе говоря, облако пара эквивалентной массы гораздо больше по объему, а скорость звука в нем намного меньше.  [c.289]

    Фактически все эксперименты с дефлаграцией углеводорода массой менее 1 т продемонстрировали либо незначительные уровни избыточного давления, либо давление порядка нескольких сотен Па. С точки зрения "выхода" энергии эти экспериментальные исследования не дали каких-либо важных результатов. Однако известно немало примеров взрывов парового облака, в ходе которых имел место значительный "выход" энергии. В некоторых случаях оказалось возможным на основе анализа разрушений произвести ряд оценок и рассчитать ТНТ-эквивалент. В работе [Gugan,1979] представлены расчетные зависимости "выхода" энергии от количества горючего материала и от характеристики, включающей термохимические свойства горючего материала (тепловыделение при сгорании, предел воспламенения и скорость горения). Явной корреляции результатов не наблюдалось, что можно объяснить неточностью данных (некоторые из них весьма сомнительны). Однако, используя зависимость "выхода" энергии от ТНТ-эквивалента, Викема [ЛУ1екета,1984] обосновал зависимость увеличения "выхода" энергии от масштабов взрыва. В первом приближении такая оценка вполне справедлива, поскольку высвобождение незначительного количества энергии имеет нулевой "выход". Однако диаграмма [c.294]

    Для случая аварии в Порт-Хадсоне имеют место расхождения в оценке доли массы парового облака, участвующей во взрывном превращении. В работе [Davenport,1984] эта доля полагается равной 7,5%. В отчете [Burgess, 1972] авторы, хотя и принимают значение ТНТ-эквивалента равным 50 т и массу разлития равной 750 баррелям вещества, однако отмечают, что гораздо меньшее количество вещества, чем указанное, будет участвовать во взрывном превращении, ибо ко времени превращения облако паров будет находиться уже в равновесном состоянии. По известному количеству пропана, находящегося в равновесном состоянии, доля участвующей в превращении массы оценивается величиной порядка 20%. Если сравнивать со случаем аварии в Фликсборо, то данная величина составит 5% от полной массы разлития или будет равной 13%, если сформируется равновесное состояние. [c.326]

    Автор настоящей книги не имел возможности обратиться к отчету [Samuels,1974]. Однако позже эти авторы написали статью по аналогичной теме [Sadee,1977], поэтому можно полагать, что более поздняя работа, рассматриваемая ниже, содержит устоявшиеся мнения указанных авторов по данному вопросу. В цитируемой работе приводится величина ТНТ-эквивалента примерно 16 т для воздушного взрыва (32 т при взрыве на поверхности земли). [c.338]

    Ссылаясь на источник, указанный в п. 3, автор работы [Gugan,1979] полагает величину ТНТ-эквивалента равной 18 т. [c.338]

    В цитируемом отчете содержатся две группы данных (табл. 13.1) первая группа - информация о разрушениях, имевших место на территории предприятия (полное разрушение зданий и оборудования) вторая группа - информация о разрушениях, имевших место за территорией предприятия (в основном разрушение стекол зданий). В нем представлены также данные о корреляции, основанной на регрессионном анализе отношений логарифма уровня избыточного давления к логарифму расстояния от центра взрыва. Коэ( )фициент регрессии находится в диапазоне 0,875 - 0,94. Коэффициент регрессии характеристики, изображенной на рис. 10.2, приближается к 1,44. Таким образом, в сравнении с конденсированным ВВ наблюдается значительное расхождение регрессий. Регрессии, отражающие степень разрушения на территории и за территорией предприятия также расходятся, причем более чем в 2 раза. Данное положение вещей противоречит точке зрения авторов работ [Phillips,1981 Lu kritz,1977], которая, однако, не является непременно верной. Применение закона Хопкинсона при расчете ТНТ-эквивалента для рассматриваемого случая позволяет получить отношение порядка 10 1. [c.339]

    Вторая работа, подлежащая обсуждению, - это [Sadee,1977]. Данные табл. 13.2, а также графики на рис. 13.19, 13.20 взяты из цитируемой работы с применением ранее рассмотренной методики расчета. В отличие от предыдущей работы здесь наблюдается гораздо меньший разброс параметров, к тому же более реален диапазон полученных значений величины ТНТ-эквивалента - 6,7 - 78 т. Такое положение вещей свидетельствует о более высоком качестве экспертизы, проведенной специалистами AWRE в зоне разрушений. Среднее арифметическое ТНТ-эквивалента составляет 32 т (наземный взрыв). Согласно авторам цитируемой работы, характеру разрушения более соответствует физическая модель взрыва на высоте 45 м над землей 16 т ТНТ-эквивалента. Модель воздушного взрыва не нашла широкого применения, хотя она позволяет обойти проблему бризантного действия ВВ. По нашему мнению, модель воздушного взрыва еше более усложняет и без того сложную ситуацию и не соответствует физической картине взрыва парового облака. [c.343]

    Теоретически могло испариться 44 т вещества, а около 80 т вещества осталось бы в жидком состоянии, если считать пренебрежимо малым количество вещества, присутствовавшего в виде капель. В качестве подтверждения приведем выдержку из работы [Sadee,1977] "На предприятии в Фликсборо около 120 т циклогексана содержалось в 5 реакторах и одном резервуаре, расположенном в конце цепи реакторов... После аварии содержание циклогексана в резервуарах составляло 80 т, т. е. во взрыве участвовало самое большее 40 т вещества". Таким образом, значение 45 т (здесь имеет место незначительное расхождение между результатами проведенных ранее вычислений и материалами [Sadee,1977]) можно полагать пределом величины утечки. Зная величину ТНТ-эквивалента наземного взрыва, равную 32 т, и величину утечки - 45 т, можно получить минимальное значение "выхода" энергии. Этот минимум составляет 32/450, или 7%, если считать 1 т циклогексана теоретически эквивалентной Ют ТНТ, Значение "выхода" энергии будет больше, если вычисление произвести для массы циклогексана в горючей части облака или если принять, что на момент взрыва процесс испарения не закончился, а также в случае некоторой комбинации этих возможностей. [c.346]

    Главная причина повышенного внимания к случаю взрыва, происшедшего в Декейторе (шт. Иллинойс, США) на товарной сортировочной железнодорожной станции 19 июля 1974 г., состоит в явной аномальности большого "выхода" энергии взрыва. Исходя из того, что произошла утечка 63 т пропана (фактически изобутана), автор работы [Gugan,1979] полагает "выход" энергии равным 32 - 65% при взрыве 20 - 40 т ТНТ-эквивалента. Такие значения, согласно ранее проведенному обсуждению, явно несовместимы. Так, "выход" для 20 - 40 т составляет 3,2 - 6,5%. Автор цитируемой работы, очевидно, ошибся в десятичном знаке. Переписка с ним показала, что ошибка возникла из-за уменьшения в 10 раз величины "выхода" энергии в соответствии со статьей [Davenport,1977] ТНТ-эквивалент составляет 200 - 400 т. (В этой статье дана исправленная оценка "выхода" для 20 - 125 т ТНТ-эквивалента - не более 18%.) [c.348]

    Пе совсем понятен используемый принцип получения оценки мощности взрыва, приводимый автором. Механическая работа по разбрасыванию 85 т металла в радиусе 45 м составляет приблизительно 20 МДж, это по энергетике эквивалентно примерно 5 кг ТПТ. Кроме того, лип7ь часть чнергии взрыва ТПТ затрачивается на совершение механической работы, что позволяет оценить тротиловый эквивалент по поражению данной аварии по крайней мере на два порядка больше приводимого автором. - Прим. ред. [c.439]

    В работе нет ссылок на обоснование правомерности такого расширения области применимости полученного соотношения. Тем не менее для всех приводимых в книге аварий, где нам удалось оценить примерную плотность людей в зоне поражения, авторская рекомендация оправданна. С учетом предыдущего замечания, например, отсюда следует, что тротиловый эквивалент аварии 19 ноября 1984 г. в Сан-Хуан-Иксуатепек (Мексика) составляет около 30 кт ТНТ. - Прим. перев. [c.504]

    В СИ предусматривается одна и та же единица — джоуль для измерения всех видов анергии, в том числе тепловой. Это устраняет необходимость введения в расчетные формулы дополнительных множителей для пересчета единиц измерения различных видов энергии. Если же тепловая энергия измеряется в ккал, то для перехода к единицам СИ или МКГСС в расчетные формулы вводится делитель А (термический эквивалент работы), равитга количеству тепла, которое соответствует данной единице работы (дж или кгс-м)  [c.34]


Смотреть страницы где упоминается термин Работа эквиваленты: [c.12]    [c.256]    [c.26]    [c.27]    [c.8]    [c.175]    [c.102]    [c.180]    [c.326]    [c.412]    [c.623]    [c.224]    [c.136]   
Краткий справочник химика Издание 6 (1963) -- [ c.518 , c.519 ]

Краткий справочник химика Издание 7 (1964) -- [ c.518 , c.519 ]




ПОИСК





Смотрите так же термины и статьи:

Эквивалент



© 2025 chem21.info Реклама на сайте