Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Температура вынужденной эластичности

    Известно [17], что в полимере под действием напряжений при температуре ниже 7с развиваются значительные высокоэластические деформации, получившие название вынужденно-эластических. Поэтому температуру перехода полимера из стеклообразного состояния в высокоэластическое при условии [а] >0 можно назвать температурой вынужденной эластичности. Тогда формула (4.7) примет вид  [c.191]


    Несминаемость тканей обусловлена проявлением вынужденной эластичности. Чем больше доля высокоэластической деформации волокна в стеклообразном состоянии, тем меньше его сминаемость. Малая сминаемость тканей типа стирай - носи объясняется проявлением значительной высокоэластичности в волокне из полиэтилентерефталата при комнатной температуре. [c.136]

    Следует отметить, что одна полимерная цепь может проходить через несколько таких флуктуационных пачек. В результате структура полимера в аморфном состоянии может быть представлена изотропной флуктуационной сеткой, узлами которой являются домены, пачки макромолекул. Такая сетка весьма лабильна. Под влиянием внешних силовых полей, а также при изменении температуры ее физические свойства - прочность, деформируемость - будут изменяться, причем доля вынужденной эластичности при повышении температуры возрастает. [c.136]

    Температура хрупкости - температура, при которой полимер разрушается в момент достижения предела вынужденной эластичности. [c.406]

    К Хрупкому происходит В том случае, если температура понижается и (или) скорость нагружения возрастает до необходимого значения. Структурное ослабление, связанное с продолжительной деформацией ползучести, вызывает в конце концов состояние локальной вынужденной эластичности. Поперечная деформация ползучести рассмотренной выше трубы из ПВХ при av — 42 МПа представлена иа рис. 8.34. Хорошо видны характерные участки кривой ползучести мгновенная (упругая) деформация ео, основная фаза уменьшения скорости деформации, вторая фаза постоянной скорости деформации и третья фаза — ускоренной ползучести. В пределах последней фазы скорости ползучести велики, а материал пребывает в состоянии вынужденной эластичности. Подобное состояние обычно легче всего достигается для наиболее сильно напряженного материала, т. е. для образца с наименьшим поперечным сечением. [c.279]

    В экспериментах, проведенных при различных температурах, скоростях деформации и гидростатических давлениях, было установлено, что вынужденная эластичность при сдвиге является термически активационным процессом [154—168, 170—173]. Согласно потоковой теории Эйринга (гл. 3), скорость деформации может быть представлена в виде [c.304]

    Это дает следующую зависимость напряжения вынужденной эластичности Оу от скорости деформации и температуры  [c.304]


    Все предложенные объяснения явления вынужденной эластичности сводятся к тому, что это явление вызвано смещением сегментов соседних цепей при изменении конформационного состояния последних. В процессе вынужденной эластичности неориентированных термопластов в цепях не образуется больших осевых напряжений и даже не обнаруживается никакого разрыва цепей при деформациях, меньших деформации вынужденной эластичности у. Вынужденная эластичность соответствует началу сильного ориентационного деформирования. Обычно она сопровождается уменьшением сопротивления материала деформированию, уменьшением поперечного сечения образца в плоскости, перпендикулярной к направлению пластического растяжения, и повышением температуры вследствие частичного превращения механической работы в тепло. Ослабление материала и его термическое размягчение при постоянном значении истинного напряжения приводят к пластической нестабильности. При растяжении образца вдоль его оси эта нестабильность становится очевидной вследствие [c.305]

    Эндрюс и др. [124, 126] также изучали набухание ПММА в равновесных условиях в различных спиртах и связывали его с наблюдаемыми изменениями предела вынужденной эластичности Ор, температуры стеклования Тс и сопротивления материала распространению трещины Я. Они сообщают об интересном явлении отсутствия температурной зависимости Я выше некоторой критической температуры Тк. При определенных условиях набухания ПММА Т соответствовала Тс в пределах ошибки эксперимента. Эндрюс и др. предложили выражение для Я, содержащее поверхностную энергию зародышевых [c.387]

    Из того факта, что значительная локальная пластическая деформация имеет место даже при быстром деформировании полимера, находящегося в стеклообразном состоянии в условиях концентрации напряжений, непосредственно следует, что молекулярные свойства, которые влияют на вынужденную эластичность и текучесть материала, также оказывают влияние и на Ос, а следовательно, на ударную вязкость. Данные, собранные в табл. 9.1, демонстрируют эту зависимость Ос от температуры, скорости деформации и молекулярных свойств. Во многих упомянутых работах (например, [14, 19, 22, 24, 25, 54, 63, 64, 212—214]) указывается на возможность существования связи между процессами молекулярной релаксации и энергии разрушения поверхности полимеров. [c.409]

    В стеклообразном (или кристаллическом) состоянии ориентированный полимер сохраняет молекулярную ориентацию неограниченно долго. Хрупкая прочность и предел вынужденной эластичности такого ориентированного полимера зависят от степени предварительной ориентации. Так как них<е температуры хрупкости предварительно заданная ориентация в процессе испытания полимера не меняется, то влияние степени ориентации на прочность полимера лучше всего выявляется по значению хрупкой прочности. Прочность ориентированных полимеров зависит от угла между растягивающей силой и направлением предварительной вытяжки. На- [c.326]

    Хрупкая прочность зависит от степени ориентации и от угла между направлением ориентации и направлением растяжения сильнее, чем предел вынужденной эластичности. Модуль упругости зависит от ориентации еще слабее, чем предел вынужденной эластичности. С увеличением степени вытяжки полимер переходит из хрупкого в вынужденноэластическое состояние. Следовательно, ориентация влияет на прочностное состояние твердого полимера так же, как и повышение температуры. С увеличением степени вытяжки хрупкая прочность полимера растет быстрее, чем предел вынужденной эластичности. При критической вытяжке прочность становится равной, а затем превосходит предел вынужденной эластичности. [c.327]

    Большие деформации, развивающиеся в стеклообразных полимерах под влиянием больших напряжений, были названы вынужденно-эластическими, а само явление — вынужденной эластичностью. При вынужденно-эластической деформации не происходит смещения центров тяжести макромолекул друг относительно друга. Как и при высокоэластической деформации, изменение формы образца происходит за счет изменения конформаций макромолекул. Однако в отличие от высокоэластической деформации этот процесс при данной температуре практически необратим. [c.156]

    Температурная зависимость предела вынужденной эластичности. Температура хрупкости. Температурная зависимость Ов прн постоянной скорости деформирования представлена на рис. V. 19. Прямая Ов = /(Т) пересекается с осью абсцисс в точке, соответствующей температуре стеклования полимера. При температуре [c.157]

Рис. V. 19. Зависимость разрушающего напряжения при растяжении <Тп й предела вынужденной эластичности Яа аморфного полимера от температуры Т. Рис. V. 19. Зависимость разрушающего напряжения при растяжении <Тп й <a href="/info/886265">предела вынужденной эластичности</a> Яа <a href="/info/22233">аморфного полимера</a> от температуры Т.

    Цель работы. Получение кривых нагрузка — деформация кристаллических и аморфных полимеров при различных температурах и скоростях приложения нагрузки, определение напряжения рекристаллизации или предела вынужденной эластичности и их зависимости от температуры и скорости растяжения. [c.163]

    Мы видели, что перемещение сегментов в процессе вынужденноэластической деформации происходит под действием напряжения, а не в процессе теплового перемещения, поскольку таковое в стеклообразном состоянии отсутствует. Однако определенный запас тепловой энергии в полимере имеется и при 7<Т(.. С ростом температуры в области ниже Тс запас тепловой энергии сегментов увеличивается и требуется все меньше внешней механической энергии для перемещения сегментов и развития вынужденно-эластической деформации. Поэтому предел вынужденной эластичности уменьшается с ростом Т. Формы кривой а—е при разных температурах приведены на рис. 10.5. При понижении температуры не только увеличивается предел вынужденной эластичности, но и сама кривая вырождается, становится неполной. Разрушение образца может произойти даже раньше, чем достигнут предел вынужденной эластичности От. При оСот разрушение, естественно, происходит при очень малых деформациях (доли процента), а это означает, что полимер при низких температурах ведет себя как хрупкий, не [c.149]

    Температура хрупкости — это температура, при которой полимер разрушается в момент достижения предела вынужденной эластичности. Чтобы определить Тхр, строят зависимость предела вынужденной эластичности Стт от температуры. Как это следует из рис. 10.5, ат увеличивается с уменьшением температуры. Зависимость От—Т приведена на рис. 10.8. Когда температура становится [c.153]

    Температура хрупкости, как и Гс, зависит от молекулярной массы (рис. 10.9). При малой молекулярной массе, когда мы имеем дело с олигомером, значения Гс и Тхр совпадают. Когда молекулы становятся достаточно длинными и, следовательно, появляется гибкость, Гс растет быстрее, чем Г р, и возникает температурный интервал вынужденной эластичности (Гс— Тхр). При дальнейшем росте молекулярной массы Г р даже несколько понижается, что приводит к увеличению интервала вынужденной эластичности для высокомолекулярных полимеров. [c.154]

    Из рис. 10.9 видно также, что с ростом молекулярной массы непрерывно ухудшается способность полимеров к необратимым деформациям. Это отражается в росте температуры текучести с ростом молекулярной массы. Рис. 10,9 показывает улучшение эксплуатационных характеристик полимеров вообще (эластомеров и пластмасс) с ростом молекулярной массы растут температурные интервалы высокоэластичности (Тт—Гс) н вынужденной эластичности (Гс Тхр). [c.154]

    Интервал вынужденной эластичности Определяется главным образом значением температуры хрупкости, которое зависит от величины прочности материала нри хрупком разрыве (<Тхр) и от характера изменения 0в с температурой, [c.215]

    Выше температуры текучести находится область вязкотекучего состояния, между и — область высокоэластического состояния, между Те и Ту р — область вынужденной эластичности и ниже Гхр полимер находится в хрупком состоянии. [c.217]

    В работах Ю. С. Лазуркина было показано, что в интерьале между температурами стеклования и хрупкости (т. е. ниже температуры стеклования) полимеры под действием больших внешних сил могут подвергаться значительным деформациям без разрушения. Такие деформации коренным образом отличаются от обычной пластической деформации, так как исчезают при нагревании разгруженного образца. Это явление получило название вынужденной эластичности. Оно обусловлено высокоэластической деформацией полимера, вызываемой действием больших внешних сйл при температуре ниже температуры стеклования, так как в этих условиях снижается энергия активации молекулярных перегруппировок, [c.587]

    С учетом всех перечисленных выше фактов предлагается следующая модель деформационного поведения эластомеров ниже их температуры перехода в стеклообразное состояние. В области I межмолекулярное притяжение достаточно сильное и сегменты цепей подвергаются энергоэластическому деформированию. Вначале постеиенно и затем за пределом вынужденной эластичности более активно происходит проскальзывание и иереориентация сегментов цепей. Разрыв цепей незначителен, поскольку цепи проскальзывают, а не разрываются. В температурной области II, где происходит хрупкое разрушение независимо от предварительной ориентации, межмолекулярное притяжение, по-видимому, достаточно велико, так что осевое нагружение сегментов цепей сравнимо с их напряжением разрушения. При отсутствии локального деформационного упрочнения наибольшая трещина, возникающая в образце в процессе его деформации до значения 5%, будет быстро расширяться, вследствие чего прекратится рост любых других зародышей трещин. На примере термопластов было показано, что образования, по существу, одной плоскости разрушения едва достаточно для получения регистрируемого количества сво- [c.214]

    Установлено, что данное выражение справедливо для ряда полимеров (ПВХ, ПК, ПММА, ПС, ацетата целлюлозы) в более или менее широких интервалах температур и скоростей деформации [154, 156, 158]. Значения у (зависящих от температуры) активационных объемов при комнатной температуре заключены в интервале 1,4 нм (ПММА) — 17 нм (ацетат целлюлозы). Это означает, что, согласно данному представлению, деформация полимеров при достижении предела вынужденной эластичности обусловлена термически-активированным смещением молекулярных доменов в объемах, размеры которых в 10 (ПММА) — 120 (ПВХ) раз больше длины мономерного звена. Ряд авторов указывал [155—158, 160], что приведенный выше критерий (8.29) соответствует критерию вынужденной эластичности Кулона To+ ip = onst. Коэффициент трения ц обратно пропорционален у. Анализируя свои экспериментальные данные по поликарбонату с учетом выражения (8.29), Бауэне— Кроует и др. [158] приходят к выводу о существовании двух процессов течения. Они связывают их с а-процессом (скачки сегментов основных цепей) и с механизмом механической -релаксации. [c.304]

    Поэтому, не будучи по строгому определению жесткоцет1Ными, волокнообразующие полиимиды имеют ту же прочность на растяжение и тот же модуль упругости, что и жесткоцепные полиамиды , но превосходят их по тепло- и термостойкости. В то же время их эластические свойства, и в первую очередь способность к проявлению вынужденной эластичности, сохраняются неизменными в чрезвычайно широком диапазоне температур (примерно от —200 до +300 °С), поскольку при очень медленных воздействиях (а стрелка действия при вынужденной эластичности всегда смещена в сторону больших т) проявляется уже независимость сегментальных движений, и полимер в целом перестает вести себя как псевдолестничный. [c.228]

    Проблемы переменной гибкости, сегрегации, равновесий при высоких давлениях и соответствующих внезапных изменений релаксационных свойств неминуемо упираются в вопрос о переходе 2-го рода, обсужденный в гл. II и V. Мы приводили аргументы в пользу того, что он может — обходным путем —быть достигнут в высокотемпературной области при высоких давлениях. Можно упомянуть и о работах Аржакова в которых наблюдались -необычные эффекты как при высоких давлениях, так и в области заведомо низких температур. Не исключено, что эти эффекты имеют термодинамическую, а не кинетическую природу внешне же они проявляются как своего рода статический эквивалент вынужденной эластичности. [c.284]

    В качестве примера для иллюстрации предельных состояний полимера рассмотрим диаграмму (рис. 11.1) нагрузка—деформация для полимера при различных температурах (либо при различных скоростях деформации). Кривая 1 соответствует хрупкому разрушению образца, при котором наблюдаются лишь упругие деформации. В этом случае разрывное напряжение сгр равно пределу прочности полимера. Кривая 2 соответствует разрушению полимера выше температуры хрупкости в нехрупком (стеклообразном) состоянии, при котором разрушению предшествует вы-нужденноэластическая деформация. Последняя развивается в полимере при достижении предела вынужденной эластичности ав [11.6 11.7]. При переходе напряжения через значение а=ав об- [c.283]

    V. 11. К каким изменениям значений температур стеклования (Гс), предела вынужденной эластичности (СТв), относительного удлинения при разрыве (ер) и разрушаюшего напряжения при растяжении (о ) приводит введение 20 % низко-. молекулярного пластификатора в полиметилметакрилат  [c.214]

    Зная 7 хр и Тс, можно определить интервал температур, в котором полимер ведет себя как упругий нехрупкий материал. Есла эластомеры применяют при температуре в пределах интервала вы-сокоэластичности (между температурами стеклования и текучести), то стеклообразный полимер (пластмассу) применяют в интервале вынужденной эластичности (Гс—Тхр). Полиметилметакрилат можно применять как конструкционный материал, потому что для нега Гс=110°С, а Гхр=10°С. Полистирол нельзя применять без специальной модификации его структуры, потому что для него Гс = = 100°С, а Гхр=90°С. [c.154]

    Одним из основных видов деформации в вершине трещины, растущей в хрупком полимере, является вынужденно-эластическая деформация. Несмотря на то что полимер в целом не обнаруживает ннкакн.х признаков вынужденной эластичности, в микрообъеме может наблюдаться перемещение сегментов н их последующее разрушение. Так, при нагревании до температуры хрупкости (Т = Тхр), когда шейка в образце еще не развивается, в микрообъеме в вершине трещины может развиваться значительная вынужденно-эла- [c.197]

    Явление вынужденной эластичности. Для стеклообразггого состояния полимеров характерны малые величины деформации при небольших напряжениях Однако в отличие от простых низкомолекулярных стекол (канифоль, силикатное стекло и т. п ) стеклообразные полимеры сохраняют в некотором интервале температур способность подвергаться при приложении больших ус]1лий значи-те.1ьным деформациям, достигающим иногда сотен процентов. [c.209]

Рис. 91. Зависимость хрупкой ilpoчнo тн и предела вынужденной эластичности от температуры. Рис. 91. Зависимость хрупкой ilpoчнo тн и <a href="/info/886265">предела вынужденной эластичности</a> от температуры.
    Для высокомолекулярных стекол температуры хрупкости и стекловапия, определенные при одинаковых скоростях деформации, не совпадают (первая всегда лежит ниже второй) ь Разность Тс—Тлр Определяет температурный интервал вынужденной эластичности, [c.214]

    У высокомолскулярнмх соединении хрупкая прочность обычно очень высока, следовательно, роняющим фактором является пторой чем резче увеличивается Ов с понижением температуры, тем меньше температурный интервал вынужденной эластичности. [c.215]


Смотреть страницы где упоминается термин Температура вынужденной эластичности: [c.36]    [c.71]    [c.213]    [c.306]    [c.284]    [c.289]    [c.154]    [c.213]    [c.214]    [c.215]    [c.215]    [c.216]    [c.232]    [c.235]    [c.239]    [c.440]   
Конструкционные стеклопластики (1979) -- [ c.191 ]




ПОИСК





Смотрите так же термины и статьи:

Эластичность



© 2025 chem21.info Реклама на сайте