Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реактор сравнение

    Наиболее традиционное сырье для производства игольчатого кокса — это малосернистые ароматизированные дистиллятные остатки термического крекинга, газойлей каталитического крекинга, экстрактов масляного производства, тяжелой смолы пиролиза углеводородов, а также каменноугольной смолы. Аппаратурное оформление установки коксования для получения игольчатого кокса такое же, как на обычных УЗК. Температурный режим коксования при производстве игольчатого кокса примерно такой же, как при пс лучении рядового кокса, только несколько выше кратность рециркуляции и давление в реакторах. Прокалка игольчатого кокса, по сравнению с рядовым, проводится при более высоких температурах (1400- 1500 С). [c.60]


    Катализатор размещают з кольцевых пространствах, образованных коаксиальными трубками определенных диаметров. Вода, отводящая тепло реакции, протекает по внутренней более узкой трубке и обтекает наружную поверхность внешней. По сравнению с реакторами низкого давления такая конструкция обеспечивает значительно больший теплоотвод в расчете на единицу реакционного объема. Некоторые детали конструкции показаны на рис. 17. В вертикально устанавливаемом реакторе диаметром 2,7 м размещают 2044 двойных трубок длиной 4,5 м. В двойную трубку помещается примерно 4,9 л катализатора, и, таким образом, общая загрузка реактора составляет около 10 катализатора, что соответствует 1 т ко- [c.110]

    Влияние констант адсорбции Ка и /(в для эндотермических реакций приведено на рис. 7.19 и 7.20 соответственно для последовательного и параллельного отравления. Рис, 7.19 показывает изменение профилей активности при изменении Кв для последовательного отравления. Как видно из рисунка, для всех значений /Св профили активности монотонно падают от входа к выходу реактора. Сравнение с рис. 7.17 для экзотермической реакции показывает, что эндотермическая реакция определяет меньшую дезактивацию для всех значений Ка. Это можно было ожидать вследствие высокого значения = Однако даже при этих слабо эндотермических усло- [c.177]

    Несмотря на то что О. Левеншпиль [8.1] разработал методы, с помощью которых могут быть получены константы скорости процесса дезактивации в различных типах реакторов, сравнение различных типов реакторов по характеристикам работы им не проводилось. Анализ был ограничен условиями, в которых процесс дезактивации либо не зависел от концентрации в газовой фазе, либо протекал при постоянной концентрации источника дезактивации. Первый из этих процессов соответствует только термическому спеканию и, следовательно, имеет ограниченное приложение, потому что эти процессы протекают очень медленно и трудно получить точные лабораторные данные для больших времен спекания. В [8.1] были рассмотрены периодический реактор идеального перемешивания и реактор идеального вытеснения. [c.183]

    Из сравнения кривых 1 я 2, соответствующих равенствам (11.6) и (П.12) ясно, что для достижения конверсии, равной 95% в реакторе непрерывного действия полного перемешивания, объем аппарата должен быть в 6,3 раза больший, чем объем реактора полного вытеснения или реактора периодического действия полного перемешивания. Для реакций более высокого порядка (кривые 3 ж 4) влияние типа реактора на степень конверсии еще более значительно. Для степени конверсии, равной 95%, объем непрерывно действующего реактора должен быть в 20 раз больше соответствующего реактора полного вытеснения. [c.31]


    Для продольного переноса такие допущения можно сделать, по-видимому, лишь после числового сравнения весовых долей, вносимых каждой составляющей в уравнении диффузионной модели. В частности, теоретические исследования по выявлению влияния продольного переноса, проведенные применительно к реакторам с неподвижным слоем катализатора [131, показывают, что при числах Ре > [c.66]

    При применении в лифт - реакторе более активного катализатора МЦ —5 достигается дальнейшее повышение выхода бензина, по сравнению с Цеокаром —2, на 13 % масс., бутиленов и пропилена соответственно на 1,4 и 1,5 % масс. [c.129]

    СРАВНЕНИЕ РЕАКТОРОВ ПОЛНОГО [c.30]

    При рассмотрении гидродинамических режимов в проточных реакторах полного вытеснения и смешения полагают, что в них отсутствует продольное перемешивание, в результате чего концентрация в сечениях, перпендикулярных направлению потока реакционной массы, постоянна. Однако создание условий в реакторах, при которых бы продольное перемешивание было сведено на нет, практически недостижимо. Например, для аппарата полного вытеснения отсутствие перемешивания может наблюдаться лишь в случае определенного соотношения между длиной и сечением реакционной зоны, при котором скорость диффузии частиц в направлении потока и навстречу ему исчезающе мала по сравнению со скоростью перемещения реакционной массы и, кроме того, турбулентные токи не дают заметного перемешивания частиц и перемещения их в направлении, обратном потоку реакционной массы. Действительно, если выделить в реакторе полного вытеснения [c.37]

    Сравнение основных измерений различных реакторов [c.190]

    Герметические приводы к перемешивающим устройствам реакторов по сравнению с другими устройствами обладают рядом пре- [c.248]

    Предварительная дебутанизация проводится не только с целью извлечения из бензинов сырья для установок алкилирования, но и для того, чтобы не загружать реактор установки каталитической очистки бутан-бутиленовой фракцией, имеющей относительно высокое содержание олефиновых углеводородов и большой удельный объем по сравнению с фракциями бензина. [c.156]

    Поскольку деасфальтизаты содержат повышенное количество металлов по сравнению с соляровыми дистиллятами, то во избежание порчи больших масс катализатора накапливающимися примесями железа, никеля, ванадия и т. д. переработку такого сырья на некоторых заводах сосредоточивают на одной установке каталитического крекинга и разбавляют его прямогонными фракциями. При переработке деасфальтизатов, как и других нестойких в условиях процесса крекинга высокомолекулярных видов сырья, необходимо весьма тщательно контролировать и регулировать работу реактора во избежание быстрого и чрезмерного коксоотложения на катализаторе. [c.215]

    В результате переноса сверху вниз места вывода катализатора из реактора и регенератора и одновременного снижения скоростей потоков в этих аппаратах схема циркуляции катализатора была упрощена по сравнению с ранее реализованной на установках модели I, а гидравлическое сопротивление системы уменьшено. И то и другое позволило уменьшать общую высоту установки и сократить расход металла. [c.254]

    Общая высота установки 35,1 м. По сравнению с обычными верхние части реактора и регенератора расширены с целью понижения скоростей паров и газов и, следовательно, уменьшения заноса катализатора в циклоны. Давление в реакторе 1,27 ати, а в регенераторе 1,41 ати. [c.272]

    По сравнению с одноступенчатым крекингом, проводимым в одном реакторе обычного типа (процесс в кипящем слое), двухступенчатый крекинг на установке рассматриваемой конструкции дает больше бензина при одном и том же выходе кокса. Это объясняется, в частности, тем, что при двухступенчатом процессе пер- [c.273]

    Предложены различные способы отделения продуктов реакции от катализатора. Так, на одной из отечественных установок верхняя часть прямоточного реактора расширена (так называемый реактор с форсированным псевдоожиженным слоем). Скорость потока газов и паров в нем составляет примерно 2 м/с. За счет меньшей скорости по сравнению со скоростью в лифт-реакторе происходит отделение основной массы катализатора от газов и паров, которое завершается в реакторе-сепараторе, а затем в циклонах и электрофильтрах. [c.38]

    На рис. У-9 приведено сравнение оптимальных температурных профилей для различных значений выхода продукта Р. Из рисунка видно, что для реактора, рассчитанного на более высокий выход продукта Р (кривая 2), средняя температура по его длине оказывается ниже, вследствие чего средняя скорость реакции также уменьшается и размеры аппарата возрастают. [c.228]

    Сравнение параметров реакторов, рассчитанных на различный выход продукта Р, при наличии ограничения на нижний предел температуры [c.239]

    Поскольку на практике реализация оптимального температурного профиля встречает серьезные технические трудности, представляет интерес рассмотреть возможность приближения к этому профилю секционированием реактора с поддержанием в пределах каждой секции изотермического режима или близкого к нему. Такое сравнение по существу эквивалентно решению задачи исследования чувствительности найденного оптимального температурного режима аппарата и в этой связи имеет еще большее значение. [c.240]


    Разумеется, что проведенное численное сравнение не может рассматриваться как детальное исследование чувствительности оптимума при отклонении температурного режима реактора от оптимального. Однако в данном случае можно вполне ограничиться и таким исследованием, чтобы с достаточным основанием рекомендовать для описываемого класса реакций двухсекционный изотермический реактор, как наилучший вариант аппаратурного оформления процесса. [c.241]

    Для сравнения реакторов различной величины удобно пользоваться количеством вещества, переработанным в единице объема [c.302]

    При крекинге на катализаторе Цеокар —2 в лифт —реакторе, заканчивающемся форсированным псевдоожиженным слоем, по сравнению с чисто лифт —реактором, выход бензина возрастает на 10,6 % масс, бутиленов на 1,2 и пропилена на 0,9 % масс., а также улучшается окта.ювая характеристика бензина. [c.129]

    Исследование реакторов для систем газ—жидкость с целью их эасчета и проектирования ведется в следующих направлениях 10] изучение механизма и скорости процесса массопередачи, осложненного химической реакцией моделирование структуры потоков двухфазной системы оценка влияния продольного перемешивания на эффективность реакторов определение межфазной поверхности, удерживающей способности, перепада давления. Важным вопросом является выбор типа реактора. Сравнение коэффициентов массоотдачи по жидкой фазе для систем газ—жидкость в различных реакторах приведено в табл. 4.1 [10]. [c.83]

    Таким образом, аппараты идеального смешения, к которым, в частности, можно отнести реакторы с кипящим слоем порошкообразного материала, имеют ряд преимуществ по сравнению с анна-ратами идеального вытеспепия. [c.273]

    На пути синтез-газа через катализатор уже в первой половине слоя достигается значительная глубина его преврап1ения. Для обеспечения технически приемлемого суммарного превращения синтез-газа, как показали промышленные опыты (рис. 9), необходимо иметь реактор со значительной высотой слоя, так как концентрация окиси углерода и водорода уменьшается все больше с соответствующим уменьшением скорости реакции. На практике вм есто одного большого реактора устанавливают 2 или 3 реактора меньшего размера. По сравнению с работой в одну ступень такой метод работы позволяет примерно на 7з сокра тить реакционный объем и количе- [c.91]

    Упражнение VI 1.12. Покажите, что в случае адиабатического реактора или эндотермической реакцип условие LM > N, выведепиое из сравнения наклонов линий Г и Л, является необходимым и достаточным. [c.179]

    Основными реакционными аппаратами установок (или секций) каталитического риформинга с периодической регенерацией кат< (лизатора являются адиабатические реакторы шахтного типа со стационарным слоем катализатора. На установках раннего по — колэния применялись реакторы аксиального типа с нисходящим или восходящим потоком реакционной смеси. На современных высокопроизводительных установках применяются реакторы только с радиальным движением потоков от периферии к центру. Радиальные реакторы обеспечивают значительно меньшее гидравлическое сопротивление, по сравнению с аксиальным. [c.195]

    Оребрение поверхности грубок предназначено для увеличения поверхности теплообмена со стороны теплоносителя, имеющего меньший коэффициент теплоотдачи. Ребристые трубки чаще всего применяются в воздухо- или газонагревателях, в воздухоохладителях и сушильных установках, реакторах и т. п. Применение их оправдано в случаях нагрева воздуха или газа горячей водой или паром, а также во всех других случаях, когда один из геплоноси-телей имеет большой, а другой — очень маленький по сравнению с первым коэффициент теплоотдачи, в результате чего получаются очень низкие значения коэффициента теплопередачи к и соответственно большие размеры поверхности нагрева. [c.199]

    Пример 1У-7. Для каскада реакторов идеального смепшиия, в ютором проводится реакция первого порядка, протекающая без измеисння числа нолей реагирующей смеси, определить выигрыш в суммарном реакционном объеме каскада по сравнению с одиночным реактором идеального смешения, рассчитанным на ту же степень превращения исходного реагента Л. [c.169]

    Опуская решение этого уравнения, остановимся лишь на анализе его результатов применительно к характеристикам дифференциальной функции распределения и сравнении их с характеристиками диффузной модели. Из анализа следует, что для газофазных процессов в диапазоне чисел Рейнольдса Ве 10 10 коэффициент продольного переноса практически не отличается от значений, полученных для ячеистой модели с полным смешением. Другими словами, влияние застойных зон в газофазных реакторах весьма ничтожно, и им можно пренебречь. Для реакторов с жидкостными потоками такой эффект можно ожидать лишь при Ке 10 10 . При Ве = 10 влияние застойной зоны уже значительно кривые распределения времени пребывания частиц в реакторе асимметричны. При числах Рейнольдса, близких к промышленньш, это влияние для жидкостных потоков еще более значительно. [c.96]

    Благодаря этому повышается также величина коэффициента теплопереноса в промышленном аппарате по сравнению с моделью. Это повышение, конечно, не компенсирует относительно малой теп-лопередаюш,ей поверхности аппарата, так как, по Касаткину [19], критерий Нуссельта пропорционален 0,8-степени критерия Рейнольдса. Отношение критериев Нуссельта обоих реакторов  [c.236]

    Технологическая схема процесса следующая (рис. 34). Сырье и раствор карбамида, насыщенный при 35°, подают из емкостей и 2 в первый реактор комплексообразования 4. Туда же вводят раствор от промывки комплекса па вакуумном фильтре 6 и раствор от промывки метилизобутилкетоном водного раствора непрореагировавшего карбамида из отстойника 9. В реакторе 4 смесь обрабатывают при температуре, повышенной по сравнению с конечной температурой комплексообразования и близкой к температуре насыщения рабочего водного раствора карбамида. Из реактора 4 реагирующую смесь перекачивают в реактор 5, в котором процесс комплексообразования завершается при установленной конечной температуре. Смесь продуктов реакции, состоящая из раствора депарафинированного продукта в метилизобутилкетоне, водного раствора пепрореагировавшего карбамида и образовавшегося твердого комплекса, из реактора 5 подают в вакуумный фильтр 6., [c.213]

    Для оценки чувствительности оптимума гораздо чаще используют прямое сравнение предполагаемого варианта реалтгзации процесса с оптимальным. Именно такой прнем применен в последующих г/тавах. тли оценки оптимального распределения 1)еакционных объемов в каскаде реакторов (см. главу IV, стр. 172) и ступенчатого приближения к оптимал[,ному температурному профилю в реакторе В1,1-теснении (см. главу V, стр. 240). Указанный подход к проверке чувствительности дает хорошие результаты, так как позволяет сразу проверить возможность приближения к оптимальному режиму. [c.38]

    Сравнение суммарного об-ьсма каскада реакторов Vгы с объемом одиночного реактора Vг для различных степеней превраи ении исходного реагента Л в случае реакции первого порядка [c.170]

    Сравнение одиночного реактора с оптимальным каскадом и каскадом реакторов равного объема для различных степеней превращения исходного реагента А в случае реакции второго чорядка (/V = 2) [c.173]

    Сравнение результатов расчета, приведеппых в табл. 8 и 9, показывает, что ограничение на нижнее значение температуры заметно влияет па необходимое время пребывания реагентов в реакторе. В особсч -иости это влияние проявляется прн задании величины которая приближается к предельно достижимому значению, определяемому нижним ограпичеппем тс.м-пературы  [c.240]

    Когда управление ведется температурой теплоносителя, что особенно интересно нри решении практических задач проектирования, и управляющее воздействие входит только в одно из уравнений системы (VI 1,28.3) — уравнение теплового баланса реактора, возникает задача 8, приведенная вьппе. Для сравнения с резул ,татами, получающимися, если обеспечить оптимальные температурные условия дл)г химической реакции, можно рассмотреть задачу с испол .-зованием в качестве управляющего воздействия температуры реагирующей смеси. При этом система уравнений (VI ,283) может приниматься как система уравнений материалььилх балансов реагентов, куда температура входит через константы скорости реакции. [c.365]


Смотреть страницы где упоминается термин Реактор сравнение: [c.161]    [c.127]    [c.37]    [c.78]    [c.84]    [c.108]    [c.163]    [c.31]    [c.188]    [c.133]    [c.241]   
Общая химическая технология (1977) -- [ c.125 ]




ПОИСК







© 2025 chem21.info Реклама на сайте