Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методика спектроскопии приготовление образцов

    Адсорбция водорода на платине, нанесенной на у-окись алюминия (алон-С), была исследована Плискином и Эйшенсом (1960) методом инфракрасной спектроскопии. Приготовление образца и методика регистрации инфракрасных спектров для этих систем были описаны в гл. 2. [c.119]

    Для ИК-спектроскопии используют образцы в виде пленок, полученных из раствора. Пленки нерастворимых полиамидов могут формоваться горячим прессованием или готовиться микротомом в виде тонких срезов (2—3 мкм). Во всех случаях необходимо с очень высокой точностью контролировать толщину образца. Недавно была предложена новая ускоренная методика приготовления образцов, которая может рассматриваться как метод неразрушающего контроля. Он состоит в том, что пучок ИК-света направляется на поверхность контакта между исследуемым образцом и материалом с гораздо большим показателем преломления со стороны материала с высоким показателем преломления под углом, примерно равным 45°. При этом большая часть энергии отражается от граничной поверхности. Часть потока, прошедшая через граничную поверхность, проникает в исследуемый образец на глубину нескольких мкм. Если таким образом удается создать несколько отражений, то при этом достигается заметное усиление сигнала, что позволяет получать хорошие спектры поглощения. В качестве материала с высоким коэффициентом преломления обычно используют смешанный кристалл бромида и иодида таллия с показателем преломления 2,6. Вследствие того что единственное требование при проведении экспериментов — хороший оптический контакт между призмой с высоким коэффициентом преломления и исследуемым веществом, требуется минимальная подготовка образца. Эта методика пригодна для нерастворимых полиамидов. [c.243]


    Достоинством методов колебательной спектроскопии является то, что они допускают исследование практически любого неорганического или органического вещества в любом агрегатном состоянии— газе, жидкости, растворах, кристаллах или аморфной фазе. Для получения спектра требуются миллиграммовые образцы, причем вещество обычно полностью сохраняется в неизменном состоянии. Имеются методики и приспособления, позволяющие получать колебательные спектры микро- и макрообъектов без отбора и приготовления образцов. По нижнему пределу количественного определения методы ИК и КР спектроскопии в обычном аппаратурном оформлении уступают некоторым другим физическим методам, но использование новейших фурье-спектрометров позволяет повысить концентрационную чувствительность во много раз. [c.171]

    Исследование веществ методом инфракрасной спектроскопии включает три основных этапа — приготовление образца, регистрацию его спектра и интерпретацию последнего. Все этапы одинаково важны и пренебрежение любым из них приводит к ошибкам и неточностям. Например, даже на хорошо отлаженном спектрофотометре нельзя получить удовлетворительный спектр, если образец приготовлен неправильно или взят в недостаточном количестве. Поэтому затрата времени на подбор методики и тщательное приготовление образца в соответствии с известными требованиями вполне себя оправдывает. [c.67]

    В инфракрасной спектроскопии, к сожалению, нет единой терминологии одно и то лее понятие у разных исследователей именуется не одинаково, что отмечено в литературе, например в известном справочнике [109]. Поэтому рядом с каждой спектрограммой в гл. 6 указан источник, откуда она заимствована. Это позволит читателю обратиться к первоисточнику , узнать о происхождении и свойствах исследованного материала, способе приготовления образца, применявшейся аппаратуре и методике эксперимента, а также о сделанных выводах. [c.170]

    При изучении разнообразных коллоидно-химических объектов широко используют методы сканирующей и просвечивающей электронной микроскопии. Отметим перспективную методику приготовления реплик быстро замороженных образцов золей, позволяющую фиксировать во вра ени изучаемую картину. В исследованиях строения поверхности эффективно применяют такие современные физические методы, как Оже-спектроскопию, дифракцию медленных электронов, масс-спектрометрию вторичных ионов и др. [c.208]

    Хаусдорф [4] предложил, а Хармс [3] развил и систематизировал очень полезный способ приготовления образцов по методике пиролиза. Эта методика предназначена для полимерных материалов, которые так плохо обрабатываются, что их образцы для ИК-спектроскопии либо приготовляются с большим трудом, либо их совсем нельзя приготовить ни одной из других методик для твердых веществ. Примерами такого рода соединений являются некоторые эпоксидные смолы, тефлон, кель-F, дакрон, терилен, вулканизированный каучук, термостойкие смолы, формовочные смолы и эмали. [c.82]


    Взаимодействие полиэфира с аэросилом исследовалось методом ИК-спектроскопии по специально разработанной методике [126]. Покрытие формировалось на поверхности частиц аэросила с удельной поверхностью 175 и /т. При таком способе приготовления образцов количество пленкообразующего, взаимодействующего с твердой поверхностью, значительно превыщает его объемное содержание, что дает возможность исследовать характер взаимодействия непосредственно на границе полимер — твердое тело методом ИК-спектроскопии. Примененный в данной работе метод приготовления образцов в отличие от методов, предусматривающих многократное отражение луча от зеркальной поверхности, покрытой монослоем полимера [127], или пропитку мономером пористого стекла [128, 129], является более простым и прямым, так как дает возможность исследовать характер взаимодействия с твердой поверхностью пленкообразующих, применяемых в промышленности. Адсорбция олигомера проводилась в течение двух суток при 20°С из 0,5 и 2,5%-ных растворов смолы в ацетоне с последующим добавлением нафтената кобальта и гидропероксида кумола. Полимеризация осуществлялась при 80 °С в течение 3 ч. Обработанный смолой аэросил прессовался в таблетки размером 10X18 мм под давлением 3,5 МПа. Спектры пересчитывали в щкалу оптических плотностей относительно фона поглощения аэросила. В спектре аэросила наблюдается узкая полоса поглощения валентных колебаний свободных поверхностных гидроксильных групп 3750 см 1 и широкая полоса с максимумом около 3500 см , обусловленным поглощением возмущенных адсорбцией воды гидроксильных групп поверхности и связанных друг с другом водородной связью адсорбированных молекул воды [130]. [c.98]

    Информативность ИК-спектроскопии в химии моносахаридов ограничивается несколькими обстоятельствами. Во-первых, свободные сахара нерастворимы в обычных, применяемых при этом методе органических растворителях (СС14, СНСЬ и др.), и поэтому спектры свободных сахаров приходится снимать в вазелиновом масле или таблетках КВг, что помимо методических трудностей иногда приводит к некоторым погрешностям. Обычная методика работы — с растворами в органических растворителях — применима лишь к производным моносахаридов, обладающих достаточной растворимостью. Во-вторых, и это, пожалуй, самое главное, —ИК-спектры моносахаридов очень сложны и их трудно интерпретировать. В-третьих, полосы ИК-спект-ров моносахаридов, снятые в кристаллическом и аморфном состоянии, иногда оказываются значительно смещенными для различных препаратов (до 20 см ). Отсюда вытекает необходимость для сравнительных исследований соблюдать идентичную методику приготовления образцов. [c.85]

    Материал этой части главы разбит по разделам возбуждение, приготовление образцов, измерения и разнообразные методические приемы. Вначале рассмотрены главным образом вопросы выбора источников света, интенсивности света и выделения выбранных спектральных интервалов при помощи фильтров и монохроматоров. Кроме возбуждения действием света, существует множество других методов возбуждения, включая возбуждение рентгеновскими лучами, гамма-лучами, электронами и другими быстрыми частицами. Однако в большинстве исследований по люминесценции для возбуждения используют видимый и ультрафиолетовый свет. Поглощение света значительно более селективно, чем другие методы, а так как последние с большей полнотой рассмотрены в ряде уже опубликованных работ, то мы ограничимся здесь только первым методом. Приготовление образцов включает очистку веществ, приготовление твердых стекол, низкотемпературную методику и выращивание монокристаллов. В следующем разделе описана аппаратура для регистрации флуоресценции и фосфоресценции, для измерения времени жизни и квантового выхода. Прингсгейм [17] в своей монографии Флуоресценция и фосфоресценция дает хорошее представление о методах эксперимента, применявшихся примерно до 1949 г. Исчерпывающий обзор по спектроскопии и спектрофотометрии в видимой и ультрафиолетовой области дан Вестом [33]. Более специфичные вопросы, связанные с определением флуоресценции и фосфоресценции, источниками света, приемниками, флуориметрами, приборами для регистрации спектров флуоресценции и фосфоресценции и для измерения времени жизни и квантового выхода рассмотрены Вотерспуном и Остером [35]. Исчерпывающая библиография, собранная Липсетом [36], содержит ссылки на работы, в которых рассматриваются вопросы методики исследования переноса энергии и сходных явлений. [c.81]

    Конечно же, прежде всего ваше вещество должно растворяться в выбранном растворителе. Но растворимость не обязательно должна быть очень высокой, особенно если вы собираетесь регистрировать прогонный спектр. В этом случае 1 мг вещества в 0,4 мл растворителя вполне достаточно для получения хорошего спектра на приборе со средним и сильным полем. Растворитель может повлиять на получаемые результаты еще несколькими путями. При наблюдении протонов и углерода сигналы растворителя могут закрывать некоторые области спектра. Вязкость растворителя влияет на разрешение в спектре, особенно при работе с протонами. Некоторые растворители, например вода и метанол, содержат способные к обмену атомы водорода, что не позволяет наблюдать сигналы обменивающихся протонов в изучаемом веществе. Если планируются температурные эксперименты, то необходимо учесть температуры кипения и замерзания растворителей, равно как и возможные температурные изменения растворимости исследуемого вещества. Растворители ароматической природы, такие, как бензол и пиридин, могут вызывать большие изменения химических сдвигов в спектре растворенного вещества по сравнению со спектрами, полученными при использовании неароматических растворителей. Интедсивность н ширина сигнала дейтерня от растворителя могут оказывать влияние на результаты некоторых экспериментов, таких, как, например, разностная спектроскопия. И наконец, цены иа дейтерироваиные растворители различаются очень сильно, что может оказаться важным ( ктором при выборе методик для ежедневного приготовления и измерения спектров большого числа образцов. От тщательного учета всех перечисленных факторов может во многом зависеть успех всего эксперимента. [c.55]


    Применение различных спектроскопических методов, в особенности метода ИК-спектроскопии, позволило получить достаточно надежные результаты, мало зависящие от условий проведения эксперимента. Значительные исследования в этой области проведены Ермоленко [5]. Жбанковым [6], Никитиным [7] и др. Но следует подчеркнуть, что чувствительность метода ИК-спектроскопии уступает химическим. Современная методика приготовления целлюлозных препаратов для изучения спектров не позволяет исследовать образцы оксицеллюлоз с содержанием СООН-групп ниже 2%, так как при меньшем количестве карбоксильных групп требуется введение в препарат большого (свыше 0,5%) количества целлюлозы, что приводит к резкому увеличению светорассеяния, [c.467]

    Поверхность окиси алюминия, как и к структурными гидроксильными группами. Первое исследование методом инфракрасной спектроскопии поверхностных гидроксильных групп Y-окиси алюминия было проведено Пери и Хэннаном [1]. Исследовались спектры приготовленных цо специальной методике прозрачных пленок окиси алюминия. В спектре исходного неоткачанного образца окиси алюминия наблюдались полосы поглощения в области 3300 и 1650 см валентных и деформационных колебаний адсорбированных молекул воды. Откачка образца при 400°С приводила к удалению молекул воды и появлению нескольких полос поглощения в области валентных колебаний гидроксильных групп. После откачки образца при 700° С наблюдались три полосы поглощения 3795, 3737 и 3698 см , которые были приписаны валентным колебаниям структурных гидроксильных групп окиси алюминия. [c.278]

    Начало развития инфракрасной спектроскопии относится к тридцатым годам. Однако существенных успехов инфракрасная спектроскопия достигла за последние пятнадцать лет. Причем за эти годы интерес к изучению инфракрасных спектров имел, если можно так выра-зться, два подъема. Первый относится к самому началу пятидеснтых годов, когда в связи с успехами экспериментальной физики в диапазоне инфракрасных воин было выполнено очень большое число работ по исследованию резонансного поглощения органических веществ. Тот факт, что изучению подверглись именно органические соединения, в первую очередь объясняется чисто методическими соображениями — удобством исследования органических соединений в жидкой фазе. За прошедшие после этого 10 лет накоплен богатый материал по спектрам органических соединений, связи частот и интенсивностей линий поглощения со строением как всего соединения в целом, так и отдельных групп атомов, входящих в него. Было проведено много не только экспериментальных, но и теоретических работ. Весь этот круг вопросов был широко отражен в периодической печати и в целом ряде монографий. Изучение неорганических соединений сильно отставало из-за отсутствия удобной методики исследования твердых тел, в первую очередь методики приготовления непосредственно образцов, однако интерес к изучению инфракрасных спектров твердых тел все возрастал. У физиков этот интерес был в [c.5]

    Кроме уже описанных, имеются и другие методики приготовления твердых образцов. По методике нарушенного полного внутреннего отражения (НПВО) легко получают характерные спектры твердых пластмасс, эластомеров, тканей, клеев, порошков, пенопластов и неорганических соединений. Более правильно явление описывается термином внутреннее отражение . Термины многократное внутреннее отражение (МВО) и нарушенное многократное внутреннее отражение (НМВО) только недавно вошли в словарь спектроскописта. Суть метода заключается в следующем. Вырезают твердые образцы определенного размера и закрепляют их на внутренне отражающей пластине. Падающее инфракрасное излучение отражается от образца, проникнув в глубь его на несколько микронов. Ход лучей зависит от угла падения, показателя преломления и коэффициента поглощения образца. Детальное описание спектроскопии внутреннего отражения дано в гл. 9. [c.84]


Смотреть страницы где упоминается термин Методика спектроскопии приготовление образцов: [c.44]    [c.184]    [c.607]   
Введение в молекулярную спектроскопию (1975) -- [ c.148 , c.149 ]




ПОИСК





Смотрите так же термины и статьи:

Методика приготовления образцов для ДТА

спектроскопия приготовление образцов



© 2025 chem21.info Реклама на сайте