Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиэтилен газопроницаемость

    Производство полиэтилена. Полиэтилен—один из самых распространенных полимерных материалов, находящий широкое применение как в промышленности и сельском хозяйстве, так и в быту. Полиэтилен имеет уникальные физические и химические свойства температура плавления 100—125°С, устойчив к действию концентрированных щелочей и кислот, высокая-эластичность даже при низких температурах примерно минус 50—60Х, абсолютная негигроскопичность, очень высокие диэлектрические свойства и сравнительно малая газопроницаемость пленок. [c.319]


    Благодаря химической стойкости, высоким диэлектрическим свойствам, механической прочности, морозостойкости, низкой газопроницаемости и большой водостойкости, безвредности и легкости переработки полиэтилен находит широкое применение в машиностроении, производстве бытовых изделий, в сельском хозяйстве, производстве искусственных кож и пленочных материалов, в строительной технике, медицине и, т. д. [c.177]

    Упаковку в среде инертного газа применяют для обеспечения сохранности продуктов и выполняют известными способами в камере с инертным газом. При такой упаковке наиболее важны такие свойства пленок, как малая газопроницаемость (особенно по кислороду), способность к свариванию или склеиванию. Для этих целей применяют пленки комбинированные (например, алюминиевая фольга — полиэтилен) или многослойные (полиэтилен—целлофан, полиэтилен—фторопласт и др.). Один из слоев такой пленки должен быть воздухонепроницаемым, другой — иметь хорошую свариваемость. [c.73]

    При исследовании газопроницаемости пленок некоторых частично закристаллизованных полимеров (гуттаперча, полиэтилен НП, полиамид 6) было установлено, что после предельной ориентации газопроницаемость пленок уменьшается либо в связи с дополнительным повышением степени кристалличности полимеров, либо с увеличением плотности упаковки аморфных областей полимеров 2. Возможность увеличения плотности упаковки молекул полиэтилена при растяжении пленок отмечается также в работе [c.149]

    Исследование газопроницаемости пленок полимеров, находящихся в равновесии с сорбированными парами, показало, что при сорбции паров СеНи и U полиэтиленом низкой плотности наблюдается значительное повышение проницаемости полиэтиленовых пленок по отношению к азоту и кислороду . При этом значение коэффициентов газопроницаемости Р полиэтилена линейно возрастает с увеличением весовой концентрации сорбированного гексана, а значение энергии активации Ер остается приблизительно постоянным. Изменение значений Р обусловлено ростом коэффициента диффузии D, в то время как коэффициент растворимости газов а при сорбции пленкой органических растворителей существенно не изменяется. В системе гидрат целлюлозы — вода значение Р для О2 и N2 и в особенности для СО2 быстро возрастает с увеличением относительного давления паров воды. График зависимости Р для Oj от весовой концентрации воды в гидрате целлюлозы имеет два линейных отрезка, пересекающиеся в точке, отвечающей относительной влажности, равной 74%. На значения Р полиэтилена для О2, N2, СО2 относительная влажность газов не влияет. Предполагается, что сорбция паров воды не влияет на содержание кристаллической части и набухание происходит только в аморфных областях полимеров. Газопроницаемость смеси газов часто зависит от высокой растворимости одного из входящих в смесь газов. Так, исследование полиэтилена по отношению к смеси этана с бутаном показало что проницаемость смеси увеличивается с ростом концентрации бутана по сравнению с расчетной (по исходным коэффициентам Р) [c.172]


    Аномалия значений газопроницаемости СОа (как и в случае коэффициента диффузии) связана с большими значениями сорбции углекислого газа полиэтиленом это явление отмечалось и другими исследователями [45, с 459]. [c.84]

    Полиэтилен, получаемый на окиснохромовых катализаторах, по своей структуре является полимером с линейным строением цепей, что обусловливает его высокую кристалличность по сравнению с другими полиэтиленами и высокую плотность. Поэтому он может быть применен везде, где требуется повышенная температура размягчения, большая твердость, вязкость, прочность, химостойкость, малые газопроницаемость и влагопоглощение [1, 2]. Для повышения его эластичности можно модифицировать свойства сополимеризацией на тех же катализаторах с пропиленом и а-бутиленом. [c.281]

    Пентапласт стоек к большинству органических растворителей, слабым и сильным щелочам, слабым и некоторым сильным кислотам на него действуют только сильные окисляющие кислоты, такие, как азотная и дымящая серная [32]. При этом воздействие агрессивных сред значительно меньше влияет на изменение механических свойств пентапласта, чем на изменение свойств фторопласта-3. Пентапласт более стоек, чем полипропилен, к концентрированным минеральным кислотам (30%-ной хромовой и 60%-ной серной) и органическим кислотам (75%-ной уксусной) и особенно к органическим растворителям кетонам, хлорсодержащим и ароматическим углеводородам. Такая повышенная химическая стойкость пентапласта обусловлена его строением — прочностью связи хлорметильных групп с углеродом основной цепи и компактностью его кристаллической структуры. Удачное сочетание физико-механических свойств с повышенной химической стойкостью выгодно отличает пентапласт от других термопластичных материалов. Пленки пентапласта практически непроницаемы для кислорода и азота по сравнению с полиэтиленом они менее газопроницаемы для паров воды и двуокиси углерода, [c.169]

    Окиси фторолефинов легко образуют с виниловыми мономерами блоксополимеры, обладающие повышенной химич. стойкостью, ударной вязкостью, огнестойкостью и низкой газопроницаемостью. Сополимеры гексафтор-ацетона с этиленом проявляют пониженную горючесть по сравнению с полиэтиленом и водоотталкивающие свойства. Их можно использовать для получения защитных покрытий по металлу (например, методом напыления). [c.404]

    Большой интерес представляют смеси натурального, бутадиенстирольного или бутилкаучуков с полиэтиленом низкого давления, представляющие привитые и блок-сополимеры. Вулканизаты из этих смесей имеют повышенное сопротивление разрыву и истиранию, повышенную эластичность и пониженную газопроницаемость [581]. [c.93]

    При малом удельном весе (0,91) полипропилен обладает большей жесткостью и прочностью, чем полиэтилен. Пленки из полипропилена могут изготовляться совершенно прозрачными и отличаются от полиэтиленовых еще меньшей влаге- и газопроницаемостью. Изменяя определенным образом условия синтеза полипропилена, можно получать продукты с различным содержанием стереорегулярной части (мол. в. от 10 ООО до 150 ООО), обладающие вследствие этого различными свойствами, в частности большей или меньшей жесткостью и эластичностью. Полипропилен дает очень прочное волокно. [c.249]

    Полиэтилен — предельный углеводород с молекулярной массой от 10 000 до 400 000. Он представляет собой бесцветный полупрозрачный в тонких и белый в толстых слоях, воскообразный, но твердый материал с температурой плавления 110—125°С. Обладает высокой химической стойкостью и водонепроницаемостью, малой газопроницаемостью. Его применяют в качестве электроизоляционного материала, а также для изготовления пленок, используемых в качестве упаковочного материала, для изготовления легкой небьющейся посуды, шлангов и трубопроводов для химической промышленности. Свойства полиэтилена зависят от способа его получения например, полиэтилен высокого давления обладает меньшей плотностью и меньшей молекулярной массой (10 000— 45 000), чем полиэтилен низкого давления (молекулярная масса 70000—400 000), что сказывается иа технических свойствах. Для контакта с пищевыми продуктами допускается только полиэтилен высокого давления, так как полиэтилен низкого давления может содержать остатки катализаторов — вредные для здоровья человека соединения тяжелых металлов. [c.485]

    Замерзание воды в полиэтиленовых трубах не вызывает их разрушения это объясняется способностью материала растягиваться и восстанавливать первоначальные размеры после снятия нагрузки кроме того, полиэтилен обладает высокой морозостойкостью. Газопроницаемость полиэтилена низкого давления в четыре раза меньше газопроницаемости полиэтилена высокого давления. [c.110]

    Из этих таблиц видно, что полиэтилен обладает относительно небольшой газопроницаемостью. [c.137]

    К пленкам обычно относят изделия толщиной от нескольких микрон до 0,5 мм, изделия большей толщины относят к листам. Пленка из мягкого полиэтилена, являющаяся хорошим упаковочным материалом и обладающая высокой прозрачностью, занимает в этой области господствующее положение. Однако с развитием специальной техники переработки повысилось также значение пленок из жесткого полиэтилена и полипропилена. Пленки из полипропилена отличаются высокой прозрачностью и прочностью при повышенных температурах, а пленки из жесткого полиэтилена—стерильностью, высокой химической стойкостью и низкой газопроницаемостью. Меньшей газопроницаемостью обладает лишь саран. По сравнению с мягким полиэтиленом, жесткий полиэтилен имеет меньшую удельную ударную вязкость и меньший предел прочности при растяжении. Механические свойства пленок из жесткого полиэтилена и полипропилена могут быть значительно улучшены при их двухосном растяжении. При этом пленка из твердого полиэтилена становится почти прозрачной, однако ее предел прочности при растяжении недостаточно высок . [c.128]


    Полиэтилен обладает высокой химической стойкостью и мало) газопроницаемостью, одиако его невозможно применить в качестве защитных покрытий ввиду пизкой адгезии полимера к металлическим поверхностям. Путем сополимеризации этилеиа с небольшим количеством метилакрилата (5—10/ь) можно получить сополимер, нленки которого имеют улучшенные адгезионные свойства. При этом другие положительные свойства полиэтилена заметно ие изменяются. [c.513]

    В последние годы в ряде стран, в том числе в СССР, организовано производство полипропилена, который применяется для тех же целей, что и полиэтилен, но обладает более высокой термостойкостью и меньшей влаго- и газопроницаемостью (табл. 27). Технологическое оформление процесса получения полипропилена аналогично процессу получения полиэтилена низкого давления в присутствии металлор-ганических катализаторов. [c.139]

    Мефинов. Термопластичные материалы, устойчивые к дей-1[гвкю агрессивных сред. Обладают высокими диэлек- фнч. св-вами, низкой влаго- и газопроницаемостью. Легко рерабатываются в изделия. См. Полиэтилен, Полипропи- ш, Этилен-пропиленовые каучуки, Поли-4-метилпен-ш-1, Поли-3-метилбутен-1, Полибутен 1, Полиизобути- [c.465]

    Аналогично можно определить и приближенные значения Еп, пользуясь факторизацией энергий активации диффузии газов в полимерах Простой эмпирический метол расчета газопроницаемости полимеров в зависимости от их строения предложил Салам ° . В качестве исходного газа был выбран кислород, а исходного полимера — полиэтилен. Структурные элементы цепной молекулы полиэтилена обозначаются некоторой произвольной величиной. Остальные полимеры, в частности производные винилового ряда, рассматриваются с точки зрения усложнения основной полиэтиленовой цепл путем вве- [c.86]

    На примере определения растворимости паров СНзВг в облученном и необлученном полиэтилене было показано, что облучение мало влияет на растворимость. Следует считать, что изменение газопроницаемости полиэтилена может быть отнесено в основном за счет изменения коэффициента диффузии. [c.103]

    Ориентация кристаллических полимеров сопровождается повышением кажущейся энергии активации газопроницаемости Это повышение может происходить одновременно за счет увеличения энергии активации диффузии и теплоты растворения газа в полимере, что связано с уменьшением гибкости цепных молекула аморфной части при его ориентации. Ослабление молекулярного движения с повышением степени ориентации при растяжении полимеров наблюдалось методом ЯМР в линейном полиэтиленеи в некоторых полиэфирах . [c.151]

    Г азопроницаемость смесей полиэтилена низкой плотности с полиэтиленом высокой плотности, полиизобутиленом и полипропиленом- по отношению к СО2, N2, О2, Не и парам воды была иссле- дована Ито Введение полиэтилена высокой плотности в полиэтилен низкой плотности способ-)СТвовало снижению коэффициентов Р, О п а. Смеси полиэтилена низкой плотности с полипропиленом характеризовались наличием максимума проницаемости Р, который отвечал, по мнению автора, максимальной гетерогенности смеси. Известно, что введение полярных полимеров невысокой молекулярной массы в резины, например феноло-формальдегидной или инденкумароновой смол, способствует значительному снижению газопроницаемости резин на основе СКС-30 и НК . Выражения для коэффициентов проницаемости смесей эластомеров в зависимости от значений Р исходных эластомеров хорошо согласуются с экспериментальными данными [c.179]

    ПОЛИОЛЕФИНЫ, продукты гомо- и сополимеризацин олефинов. Термопластичные материалы, устойчивые к действию агрессивных сред. Обладают высокими диэлектрич. св-вами, низкой влаго- и газопроницаемостью. Легко перерабатываются в изделия. См. Полиэтилен, Полипропилен, Этилен-пропиленовые каучуки, Поли-4 метилпен-тен-1, Поли-З-метилбутен-1, Полибутен-1, Полиизобутилен. [c.465]

    Удачное и редкое сочетание таких свойств полиэтилена, как, химическая стойкость, механическая прочность, морозостойкость, хорошие диэлектрические свойства, стойкость к радиационным излучениям, низкая газопроницаемость и влагопогло-шение, легкость и безвредность, позволяют применять его в самых различных областях техники и в быту. Из полиэтилена изготовляют трубопроводы, сосуды для химически активных веществ, футеровку резервуаров и аппаратов, краны, детали санитарно-технического оборудования, тонкие пленки, ленты, прутки, бруски и др. Широко используется полиэтилен и для изготовления предметов бытового назначения — футляров для радиоприемников, столовой и кухонной посуды, пробок, бутылок, аяистр, ведер, ванн, скатертей, драпировок и др. Полиэтилен применяют в протезной технике, пластической хирургии, для изготовления медицинских инструментов, как упаковочный материал. [c.89]

    Пленки из полипропилена прочнее полиэтиленовых и имеют еще меньшую влаго- и газопроницаемость. Из них изготовляют упаковочный материал, в том числе для хранения пищевых продуктов, а также плащи, косынки и другие изделия. В производстве пленочных материалов применяют и сополимеры пропилена с другими олефинами, например с бутиленом. Трубы из полипропилена обладают высокой коррозионной устойчивостью, они инертны к действию кислот, щелочей, минеральных и растительных масел, спиртов и других реагентов. Полипропилен применяют для изготовления электроизоляционных покрытий, к которым предъявляются требования повышенной термостойкости (до 120—140 °С). Изделия из полипропилена имеют более высокую теплостойкость, форма их более устойчива, чем из полиэтилена полипропилен более технологичен для производства труб, бутылок, канистр и других сосудов. Полипропилен пе-реработывают в изделия в основном теми же методами, что и полиэтилен. Он легко формуется, перерабатывается на экструзионных, литьевых машинах выдуванием, на машинах вакуумного формования. Его можно перерабатывать и методом центробежного формования, неприменимым для других термопластов. [c.103]

    Как видно из таблицы, полиэтилен-целлофановые пленки отличаются низкой паро- и газопроницаемостью. Матерпалы масло- и жиронепроницаемы. Полиэтилен обеспечивает химическую стойкость пленки ко многим препаратам бытовой химии и термосвариваемость. Со стороны целлофана на пленку может быть нанесен рисунок способом глубокой или флексо-графической печати. 7 4атериал пригоден для упаковки жидких, пасто- I порошкообразных продуктов, в частности средств борьбы с насекомыми, средств по уходу за автомобилялш, красителей и др. [c.126]

    Полиэтилен обладает высокой химической стойкостью, механической прочностью, морозостойкостью, низкими газопроницаемостью и влагопоглощением. В зависимости от метода производства различают полиэтилен низкого дaвлeн я НД и высокого давления ВД. Полиэтилен низкого давления отличается от полиэтилена высокого давления большей плотностью, прочностью, жесткостью, повышенной теплостойкостью. Полиэтилен устойчив к действию серной кислоты концентрации до 70%, фосфорной и кремнефтористоводородной кислоты любой концентрации до температуры 60° С. В серной кислоте концентрации выше 75% полиэтилен недостаточно устойчив. [c.186]

    Удачное и редкое сочетание в полиэтилене химической стойкости, механической прочности, морозостойкости, хороших диэлектрических свойств, стойкости к радиоактивным излучениям, чрезвычайно низкие газопроницаемость и влагоноглощение, низкая плотность, безвредность, а также легкость переработки делают полиэтилен незаменимым в целом ряде областей применения. [c.167]

    Из приведенных данных следует, что коэффициенты диффузии газов в полимерах имеют значения порядка 10 — 10 см 1сек, а общее значение коэффициентов проницаемости изменяется в широких пределах в зависимости от природы полимера. Внимательное изучение данных табл. 33 показывает, что газопроницаемость определяется теми же структурными особенностями полимеров, которые определяют механические, электрические и другие их свойства, — это гибкость цепи, фазовое и физическое состояние полимеров, плотность упаковки цепей. Из табл. 33 видно, что наибольщей проницаемостью обладают аморфные полимеры с очень гибкими цепями, находящиеся в высокоэластическом состоянии. Кристаллические полимеры (гуттаперча, полиэтилен) обладают значительно меньщей газопроницаемостью. Очень малой газопроницаемостью обладают высокомолекулярные стеклообразные полимеры, имеющие жесткие цепи. По мере уменьщения гибкости цепи газопроницаемость закономерно уменьщается. [c.496]

    Пониженной газопроницаемостью и химич. стойкостью обладает бутилкаучук. Он отличается повышенной сопротивляемостью к действию УФ-лучей, озона, химич. реагентов и стойкостью к теплово му старению в воздушной и кислородной среде. Еще более высокой химич. стойкостью отличается продукт полимеризации изобутилена — полиизобутилен. К числу химически стойких эластомеров, способных к вулканизации и образованию резины с хорошими физико-механич. показателями, относится сульфохлорирован-ный полиэтилен. Полиуретановые эластомеры отличаются исключительным сопротивлением истиранию, намного превышающим сопротивление истиранию натурального каучука. [c.249]

    Особое внимание уделяется применению термоусадочых иленок, пленок с селективной газопроницаемостью, жиростойких плеиок, созданию покрытий непосредственно иа продуктах питания, упаковке под вакуумом и в среде инертного газа. Для мелкой расфасовки используются комбинированные упаковочные материалы целлофан — фольга — полиэтилен или лавсан — фольга — полиэтилен. [c.28]

    Газопроницаемость полимера зависит от его структуры. При этом зависимости I) и 5 от структурных факторов могут быть различными. Исследование сорбции газов полиэтиленом и его проницаемости показало [347], что константа растворимости зависит, главным образом, от степени кристалличности. Диффузия же зависит не только от степени кристалличности, но и от условий роста кристаллитов. Уменьшение проницаемости с увеличением кристалличности объясняется суммарным влиянием уменьшения сечения, по которому проходит поток газа, сопротивлением кристаллитов и ограничением молекулярной подвижности. Упорядоченность структуры полиэтилена (кристалличность) влияет на коэффициент диффузии этана значительно сильнее, чем молекулярный вес, развет-вленность и др. [348]. [c.189]

    В настоящее время разрабатываются й внедряются в производство комбинированные пленочные материалы различного назначения и состава, компонентами которых являются полиэтилен, полипропилен, ПЭТФ, в том числе металлизированный, полиамиды, целлофан, металлическая фо хьга, фторопласты, синтетические и натуральные ткани, стеклянные и капроновые волокна, бумага и другие субстраты. К этим материалам относятся двухслойная эластичная полипропиленпопролиновая пленка, выдерживающая термическую стерилизацию при 120 °С и способная свариваться, комбинированные пленки целлофан — гидрохлорид каучука и бумага — гидрохлорид каучука, обладающие жиростойкостью, низкой паро-, водо- и газопроницаемостью [2, с. 19]. [c.169]

    Сочетание таких свойств, как химическая стойкость, механ- -ческая прочность, морозостойкость и стойкость к радиоактивным излучениям, чрезвычайно низкая газопроницаемость ч вэ-догюглощение, малый объемный вес (0,9,2—0,96), делает полиэтилен незаменихмым материалом в ряде областей техники, в том числе и в строительстве. [c.17]

    Пленки применяются также при изготовлении бумаги, покрытой сараном. Сведения о приемах нанесения пленки отсутствуют. По-видимому, в данном случае может быть использовано горячее каландрование в сочетании с шприцеванием. Толщина слоя сарана на бумаге составляет 0,025— 0,25 ЖЖ. Газопроницаемость сарановых покрытий во много раз меньше, чем полиэтиленовых. Отношение коэффициентов диффузии через сарановую и полиэтиленовую пленки достигает для кислорода 1 500, для азота 1, 320, для углекислого газа 1 530. Сарановые покрытия в сравнении с полиэтиленовыми обладают также меньшей горючеетью, повышенной устойчивостью к действию жиров и растворителей и характеризуются более высоким верхним температурным пределом эксплуатации, уступая полиэтилену по щелочеустойчивости [c.97]


Смотреть страницы где упоминается термин Полиэтилен газопроницаемость: [c.501]    [c.491]    [c.83]    [c.140]    [c.81]    [c.491]    [c.304]    [c.290]    [c.290]    [c.81]   
Справочник по пластическим массам (1967) -- [ c.17 ]

Синтетические полимеры и пластические массы на их основе Издание 2 1966 (1966) -- [ c.42 ]

Основы переработки пластмасс (1985) -- [ c.107 , c.110 ]




ПОИСК





Смотрите так же термины и статьи:

Газопроницаемость

Полиэтилен коэфф. газопроницаемости



© 2025 chem21.info Реклама на сайте