Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиэтилен низкомолекулярный

    Все высокомолекулярные соединения делятся на две группы природные (натуральный каучук, естественные смолы, целлюлоза, белки, крахмал, камеди) и искусственные (искусственные смолы, различные пластические массы, производные целлюлозы, синтетические каучуки). Иногда высокомолекулярные вещества подразделяются не на две, а на три группы природные, искусственные и синтетические, В группу синтетических соединений входят все полимеры, полученные путем синтеза низкомолекулярных веществ (капрон, найлон, полиэтилен). К числу искусственных высокомолекулярных веществ относятся соединения, получаемые в результате химической обработки природных высокополимерных соединений (в большинстве случаев это производные целлюлозы). [c.327]


    Полиэтилен низкомолекулярный высокого или среднего давления. [c.133]

    В реальных молекулярных цепях полимеров на конусе вращения имеется один-два (или больше) минимума с различными потенциальными энергиями. Связь С—С может находиться либо в одном, либо в другом из этих положений с минимальными значениями потенциальной энергии. Подобные различные конформации молекул, отличающиеся потенциальной энергией, относятся к поворотным изомерам [41 11], характерным как для полимеров, так и для низкомолекулярных веществ. У полимеров они представляют собой набор различных конформаций цепей —от свернутых до распрямленных. Анализ с этих позиций формулы (4.13) привел М. В. Волькенштейна и О. Б. Птицына к заключению, что формула Тейлора относится к полимерам с симметричными привесками (полиэтилен, полиизобутилен), в которых потенциал внутреннего вращения симметричен относительно трансположения, т. е. /(ф) = = и —ф) (см. рис. 4.8 и 4.10). [c.94]

    Открытие процесса полимеризации этилена привлекло к себе внимание по ряду причин. Во-первых, с теоретической точки зрения, так как в то время полагали, что этилен не может давать высокомолекулярного пластического материала. Во-вторых, открытие его можно рассматривать как пример чисто научного исследования, не представлявшего практического интереса для промышленности. В-третьих, в то время как из этилена получались низкомолекулярные полимеры, высокомолекулярных же пластических полиэтиленов не удавалось получить из этилена, приготовленного с применением тех же методов очистки. [c.166]

    Радиационная деструкция происходит под влиянием нейтронов, а также а-, р-, у-излучения. В результате разрываются химические связи (С—С, С—Н) с образованием низкомолекулярных продуктов и макрорадикалов, участвующих в дальнейших реакциях. Облучение полимеров изменяет их свойства с образованием двойных связей или пространственных структур (трехмерной сетки) или приводит к деструкции. Но иногда происходит и улучшение качеств облучаемого полимера. Например, полиэтилен после радиационной обработки приобретает высокую термо- и химическую стойкость. Радиоактивное излучение, ионизируя полимерные материалы, способно вызывать в них и ионные реакции. [c.411]

    Большинство современных полимерных материалов содержит различные низкомолекулярные добавки пластификаторы, антиоксиданты, мягчители, отдушки и др. Часто встречается и обратная ситуация высокомолекулярные вещества вводят в относительно низкомолекулярные продукты с целью получения композиций, обладающих необходимыми свойствами. Примером могут служить различные загустители, которые широко используют в косметических и медицинских препаратах и смазочных материалах, добавки для повышения температуры плавления (полиэтилен в восках) или снижения температуры застывания (депрессорные присадки к нефтепродуктам) и др. Количественное определение таких добавок наиболее просто и надежно осуществляется методом эксклюзионной хроматографии. [c.57]


    В плане настоящей книги интерес представляют лишь те процессы, в которых из низкомолекулярных олефинов получаются искусственные вещества, такие как полиэтилен, нолиизобутилен и бутилкаучук. [c.222]

    Полиэтилен низкомолекулярный порошкообразный Монтан-воск и его модификации [c.399]

    Метанол является хорошей средой для полимеризации этш[ена, так как в нем легко растворяется этилен и не растворяется полиэтилен. Низкомолекулярный полиэтилен (с молекулярным весом 2000-—3000) получается путем полимеризации этилена в метаноле в присутствии перекиси бензоила при 100—120° С и давлении 200—300 ат [89, 99, 100]. Полимер представляет собой твердое вещество желтого цвета, похожее на воск. [c.30]

    Как было установлено, вследствие несогласованности действий персонала в еще не соединенный с газгольдером полимеризатор была начата подача этилена. При создавшемся положении полимеризатор представлял собой закрытый сосуд. Гидрозатвор, наполненный низкомолекулярным полиэтиленом, не имел сообщения с атмосферой, так как вентиль на линии, соединяющей гидрозатвор с атмосферой, был постоянно закрыт. [c.340]

    Непрореагировавший (возвратный) этилен, отделенный от полиэтилена в отделителях промежуточного и низкого давления подвергается охлаждению и очистке от содержащегося в нем низкомолекулярного полиэтилена. Полиэтилен содержится в этилене в виде мелких капель, унесенных потоком газа из отделителей, и в растворенном виде. [c.36]

    Химическая природа полимеров, как видно из рассмотрения способов их получения и строения макромолекул (см. ч. 1), принципиально не отличается от химической природы их низкомолекулярных аналогов (например, полиэтилен, полипропилен и другие производные этиленовых углеводородов и этан, пропан и другие парафины и их производные). Основная разница состоит в огромной длине макромолекул полимеров по сравнению даже с большими молекулами низкомолекулярных аналогов. Это придает по-ли.мерам тот особый комплекс физико-механических свойств (см. [c.214]

    Из реактора полиэтилен вместе с непрореагировавшим этиленом под давлением 25 МПа (250 кгс/см ) поступает в отделитель высокого давления 13, в котором за счет разности плотностей этилена и полиэтилена происходит разделение этилена и полимера. Жидкий полиэтилен через дросселирующий клапан по обогреваемому трубопроводу направляется в отделитель низкого давления 14 0,15—0,60 МПа (1,5—6 кгс/см ). Этилен из отделителя ВД поступает в систему очистки и охлаждения (циклонный сепаратор 15, холодильник 16 и фильтр 17), а затем в смеситель ВД 6. Накапливающийся в сепараторах 15 и фильтре 17 низкомолекулярный полимер, унесенный из аппарата 13, периодически сбрасывается в сборник 18. Этилен из отделителя НД проходит через сепаратор 19, холодильник 20 и фильтр 21 и поступает в смеситель низкого давления 1. [c.7]

    Далее было показано, что аналогичным путем можно получать из этилена низкомолекулярные полимеры, содержащие звенья другой химической природы. Типичным примером является выше описанная реакция К. Циглера (стр. 595) по получению полиэтиленов при взаимодействии триэтилалюминия с этиленом. По реакции [c.644]

    Химическое расщепление высокомолекулярных веществ путем окисления или аутоокисления происходит так же, как у низкомолекулярных соединений, например по месту двойных связей. Насыщенные полимерные вещества, такие как полиэтилен, тоже чувствительны к аутоокислению. В этом случае расщепление, вероятно, происходит у третичных атомов углерода. [c.949]

    Полимеризацией называется реакция получения высокомолекулярных соединений из низкомолекулярных, не сопровождающаяся выделением побочных продуктов и изменением элементарного состава. Методом полимеризации получают полиэтилен, полистирол, политетрафторэтилен и другие соединения. [c.198]

    При действии на полиэтилен радиоактивного излучения" происходит интенсивное выделение газов, в которых содержится водород и небольшое количество низкомолекулярных углеводородов, Выделение каждой молекулы водорода связано с образованием двух макрорадикалов  [c.212]

    Синтетические высокомолекулярные вещества могут быть получены из низкомолекулярных веществ методами полимеризации или п о л и к о н д е и с а ц и и. К синтетическим высокомолекулярным веществам относятся полиэтилен, полипропилен, полиизобутилен, полистирол, политетрафторэтилен (фторопласт-4), фенопласты и многие другие. [c.138]

    Предварительно приготовленные твердые катализаторы. Первые работы <с применением твердых катализаторов для полимеризации олефинов приводили [20] к образованию газов, маслянистых жидкостей и низкомолекулярных хрупких твердых материалов. Лишь в 1953 г. удалось получить механически прочный полиэтилен высокого молекулярного веса с применением твердых катализаторов [77]. Для этого газообразный этилен пропускали над восстановленным металлическим кобальтом па активном угле в качестве носителя. Полимеризацию проводили при температуре 0—250° и давлении не менее 35 ати. После завершения реакции твердый катализатор экстрагировали жидким растворителем и получали раствор полимера. Процесс удалось значительно усовершенствовать проведением реакции в среде жидкого углеводорода [78]. [c.285]


    Первый полиэтилен в промышленном масштабе был получен немногим более 50 лет назад. В 1983 г. был отмечен золотой юбилей промышленного производства этого простого, но очень ценного полимера, без существования которого трудно представить многие современные технические достижения. Несмотря на кажущуюся простоту полимера, организации первого промышленного производства предшествовала большая работа ученых. Еще в прошлом веке проводились исследования по синтезу полимера из простейшего непредельного углеводорода -этилена. Русскому химику Г. Г. Густавсону в 1884 г. удалось осуществить полимеризацию этилена при каталитическом воздействии хлорида и бромида алюминия при температуре 100 °С. При зтом впервые были получены жидкие маслообразные низкомолекулярные полимеры этилена. Аналогичные низкомолекулярные полимеры получали позднее по реакции Орлова при каталитическом гидрировании оксида углерода и в ряде других реакций. [c.7]

    Система охлаждения этилена низкого давления аналогична описанной выше, но с меньшим числом секций. Выделяющийся низкомолекулярный полиэтилен (особенно в последней секции) может налипать на стенки холодильника. При этом увеличивается перепад давления в системе возвратного газа и ухудшается теплопередача, что вызывает повышение температуры возвратного газа. Высокая температура газа, поступающего на компримирование, снижает производительность компрессоров. [c.36]

    Низкомолекулярный полиэтилен, выделившийся из возвратного газа в сепараторах в расплавленном виде, периодически выводится в специальные емкости, обогреваемые паром, из которых выливается в специальную тару и направляется на утилизацию. [c.37]

    Высокими эксплуатационными свойствами обладают покрытия на основе эластомеров. Растворы для покрытий готовят из низкомолекулярных или деструктированных каучуков и легко растворимых эластомеров, к которым относятся хлорированный каучук, циклизированный каучук, бутадиен-стирольные и бутадиен акрилонитрильные сополимеры, сульфохлорированный полиэтилен низкомолекулярные полисульфидные и хлоропреновые эластомеры Из перечисленных материалов наиболее широкое применение в ан тикоррозионной технике нашли сульфохлорированный полиэтилен полисульфидные и хлоропреновые эластомеры. [c.109]

    Высказывались различные предположения о причинах эрозии — разрушения полимерных диэлектриков под действием разрядов термодеструкция, связанная с резким локальным повышением температуры, деструкция, нроисходящ ая в результате бомбардировки электронами и ионами из зоны разряда, радиационно-окислительная деструкция, обусловленная цепной реакцией с кислородом воздуха углеводородных макрорадикалов, которые образуются при воздействии электронной бомбардировки на полимер. В последнем случае предполагалось [157], что углеводородный радикал, присоединяя кислород, превращается в перекисный, который после отщепления иона радикала с двумя атомами углерода опять превращается в углеводородный и т. д. Отделившиеся ион-радикалы в результате дальнейшего окисления образуют стабильные вещества спирты, кислоты, двуокись углерода, воду. Такая схема позволяет объяснить преобладание среди продуктов разложения в полиэтилене низкомолекулярных соединений, хотя первичные разрывы цепи происходят, вероятно, беспорядочно в различных точках углеродной цепи. [c.99]

    Полиэтилен низкого давления (мол. вес до —3-10 ) получают, по Циглеру, с помощью смещанных катализаторов [напрнмер, Ti U + -f АЦСзНбЬ ср. стр. 188] при этом Ti + переходит в низшую валентность. Натта предложил для этой реакции анионный механизм. Полагают, что получающиеся макромолекулы не разветвлены. В противоположность этому под действием хлористого алюминия (катионная полимеризация) этилен полимеризуется с образованием сильно разветвленных, сравнительно низкомолекулярных веществ (смазочные масла). [c.937]

    Для приготовления битумно-асбополимерной мастики используют низкомолекулярный полиэтилен (побочный продукт производства полиэтилена высокой плотности низкого давления). Полиэтилен транспортируют и хранят в бумажных мешках, защищающих его от атмосферных осадков и воздействия прямых солнечных лучей, на расстоянии не ближе 1 м от нагревательных приборов. [c.80]

    С некоторыми гюлимерами полиэтилен образует однородные сплавы. Так, его можно совмещать в различных соотношениях с натуральным каучуком, гуттаперчей, бутилкаучуком. [юлнизобутиленом, а также с низкомолекулярными парафинами. [c.211]

    Приведенная схема объясняет постепенное увеличение количества поперечных связей в облучаемом полиэтилене. Образование низкомолекулярных углеводородов связано, по-иидимому, с отщеплением от полимерных цепей коротких боковых ответвлений. Присутствие кислорода в процессе облучения приводит к разрыву макромолекул и образованию перекисных мостиков. Постепенно полимер становится жестким и утрачивает растворимость, одновременно снижается и степень кристалличности полимера. [c.213]

    Изомерия у полимеров. Большие размеры макромолекул полимеров обусловили и еще одну важную особенность их в сравнении с низкомолекулярными вен1ествами той же химической природы. Как известно, уже у бутана могут быть два структурных изомера — нормальный и изо-бутан. Огромная макромолекула полимера может быть линейной и разветвленной, т. е. иметь боковые ответвления от основной цепи. Если при этом молекулярная масса линейной и разветвленной молекул одинакова, то они являются изомерами. Физические и механические свойства полимеров, состоящих из линейных макромолекул, сильно отличаются от свойств полимеров, состоящих из разветвленных макромолекул (например, полиэтилен высокой плотности и полиэтилен низкой плотности). [c.8]

    Благодаря наличию большого числа дефектов в кристаллитах полимера (в отличие от кристаллов низкомолекулярных веществ) мы можем количественно определить доли кристаллической и аморфной частей в закристаллизовавшемся полимере. В зависимости от природы полимера и условий кристаллизации доля крис таллической части может колебаться от 20 до 807о- В поливинил хлориде и в каучуках степень кристалличности даже меньше 2 %. Натуральный каучук обычно кристаллизуется на 10—15% и ли1пь при многолетнем хранении — на 25%. Напротив, в специально полученном линейном полиэтилене степень кристалличности мо жет достигать 95%. [c.174]

    Предельные углеводороды [1]. Высокомолекулярныеуглеводороды так же как и низкомолекулярные парафины, химически инертны. Они вступают в химические реакции лишь при повышенной температуре, при которой обычно протекает деструкция полимера. Например, полиэтилен, как и пизкомолекулярные парафины, хлорируется при высокой температуре, но при этом наряду с хлорированием происходит его пиролиз. [c.225]

    В последние годы начали разрабатываться мастики на основе битумов, модифицированных различными полимерами, в качестве которых используют каучуки, латексы, низкомолекулярный полистирол, полиэтилен и полипропилен, КОРС (кубовый остаток ректификации стирола), полупродукты получения дивинила, стирола, каучуков, полипропилена. Возможно также использование в качестве модификатора мономера ФА. [c.36]

    Горячий раствор полимера содержит частицы механически увлеченного катализатора, которые удаляют центрифугированием с последующей фильтрацией. Прозрачный раствор полимера охлаждают, выделяя полиэтилен в виде твердого вещества. Образующуюся пульпу фильтруют для удаления растворителя, после чего твердый полимер высушивают п шприцуют. Отделяемый на фильтре растворитель фракционируют для выделения небольших количеств низкомолекулярного но.яимера, образующегося во время полиме- П ризации. [c.303]

    Полиироиилен имеет структуру, промежуточную между полиэтиленом и полиизобутиленом, чем и иредоиределяется его поведение при действии излучений [30]. Если при облучении полиэтилена преобладающим процессом является сшивание (структурирование), а в случае полиизобутплеиа—деструкция главной цеии, то при облучении полипропилена процессы сшивания и деструкции находятся в соотношении 0,750,8 1 [29], вследствие чего одновременно образуются нерастворимый гель и низкомолекулярный полипропилен. Число химических изменений в полиэтилене, иоли-изобутилене и полипропилене, вызванных облучением с энергией 100 эв (G-значения), различается количеством образовавшихся связей [19]  [c.128]


Смотреть страницы где упоминается термин Полиэтилен низкомолекулярный: [c.29]    [c.14]    [c.14]    [c.14]    [c.23]    [c.128]    [c.950]    [c.81]    [c.13]    [c.669]    [c.139]    [c.37]    [c.470]    [c.46]    [c.14]   
Справочник по пластическим массам Том 2 (1975) -- [ c.399 ]




ПОИСК







© 2024 chem21.info Реклама на сайте