Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиэтилен кристалличности степень

    Вид кривой РТЛ чувствителен к структуре полимера (молекулярной ориентации, степени кристалличности, степени сшивания и др.) и предыстории образца это позволяет широко применять метод РТЛ при исследовании вулканизации, пластификации, ориентации и др. процессов, а также для идентификации полимеров. Изучение РТЛ в поле механич. напряжений позволяет исследовать молекулярный механизм высокоэластичности вынужденной. Метод РТЛ используют также для определения состава и однородности смесей полимеров по сопоставлению положения -максимумов смеси и каждого из компонент. Напр., наличие в многокомпонентных смесях таких полимеров, как полиэтилен, натуральный или изопреновый каучук, удается обнаружить при их содержании 1—2%. [c.310]


    Значения Рд и Ер для полиэтиленов различной степени кристалличности  [c.194]

    Гидрированный полибутадиен близко напоминает по физическим свойствам полиэтилен. Принципиальное отличие его в том, что он имеет более высокую прочность на разрыв, более низкие жесткость, твердость и температуру хрупкости. Сопоставление всех этих свойств наводит на мысль, что гидрированный полибутадиен имеет более высокий молекулярный вес, чем промышленный полиэтилен, и до некоторой степени меньшую кристалличность. Это находится в соответствии с известными дан- [c.169]

    Полиэтилен, получаемый этими методами, различается по свойствам и способности перерабатываться в изделия. Это объясняется особенностями строения полимерной цепи — степенью разветвлен-ности и длиной макромолекул полимера. Так, макромолекулы полиэтилена, получаемого методом высокого давления, имеют более разветвленное строение, что обусловливает его более низкую степень кристалличности и соответственно более низкую плотность по сравнению с полиэтиленом низкого и среднего давления. [c.5]

    Полиэтилен представляет собой роговидный продукт белого цвета. Выпускается в виде гранул или порошка. Степень кристалличности полиэтилена изменяется в широких пределах (от 55 до 90%), что обусловливает различную плотность полимера (от 0,92 до 0,96 г/см ), [c.10]

    Полиэтилен (-СН2-СНг-)п — карбоцепной термопластичный кристаллический полимер белого цвета со степенью кристалличности при 20°С 0,5—0,9. При нагревании до температуры, близкой к температуре плавления он переходит в аморфное состояние. Макромолекулы полиэтилена (ПЭ) имеют линейное строение с небольшим количеством боковых ответвлений. ПЭ водостоек, не растворяется в органических растворителях, но при температуре выше 70°С набухает и растворяется в ароматических углеводородах и галогенпроизводных углеводородов. Стоек к действию концентрированных кислот и щелочей, однако разрушается при воздействии сильных окислителей. Обладает низкой газо- и паропроницаемостью. Звенья ПЭ неполярны, поэтому он обладает высокими диэлектрическими свойствами и является высокочастотным диэлектриком. Практически безвреден. Может эксплуатироваться при температурах от -70 до 4-бО°С. [c.388]

    Основной продукт полиэтилен со средней относительной молекулярной массой 70 000 — 350 ООО, степенью кристалличности 80—90%, плотностью 0,94—0,96 г/см . [c.226]


    Полиэтилен Циглера отличается высокой степенью кристалличности и рядом важных преимуществ перед полиэтиленом, получаемым при высоком давлении механической прочностью, гибкостью, высокой температурой размягчения, способностью давать прочные нити, прекрасными электроизоляционными и антикоррозионными свойствами. [c.597]

    Полимеризация этилена может быть проведена под влиянием -облучения. При дозе облучения 36 мегарентген ст( пень пре-вращения этилена в полимер достигает 12,5% уже при давлении 84 ат. Одновременно с процессом полимеризации под влиянием 7-облучения происходит частичная деструкция образовавшегося полимера с последующим соединением продуктов деструкции в новые макромолекулы преимущественно сетчатой формы. Такой полиэтилен размягчается при более высокой температуре, чем полиэтилен высокого давления, имеет меньшую текучесть в размягченном состоянии и не растворяется даже при нагревании. При более высоких давлениях (100 ат и выше) и обычной температуре, а также при значительно меньших дозах облучения (4,5 мегарентген) можно получить твердый полиэтилен с удовлетворительными механическими свойствами. С пони>кением температуры полимеризации возрастает плотность полиэтилена (до 0,95 г см ) и степень его кристалличности. [c.195]

    Средний молекулярный вес полиэтилена, получаемого поликонденсацией диазометана, достигает 3 300 ООО. Поскольку синтез полимера в данном случае является результатом соединения метиленовых групп, образующийся полимер часто называют пол и м е т и л е н о м. Полиметилен по составу и свойствам паиболее приближается к полиэтилену низкого давления, но отличается от него еще более высокой степенью кристалличности. [c.199]

Рис. 5.11. Коэффициент теплопроводности различных полиэтиленов при Т < Тт, степень кристалличности образцов Рис. 5.11. <a href="/info/1753161">Коэффициент теплопроводности различных</a> полиэтиленов при Т < Тт, <a href="/info/56831">степень кристалличности</a> образцов
    Надмолекулярная структура. Увеличение размеров кристаллических образований, в частности сферолитов, при неизменной общей степени кристалличности приводит к снижению деформируемости полимера (снижению разрывных деформаций) и к снижению прочности. Увеличение степени кристалличности приводит к росту прочностных показателей. Примером может служить полиэтилен высокой плотности, более прочный, чем полиэтилен низкой плотности. [c.207]

    Практически к такой структуре приближается полиэтилен низкого давления со степенью кристалличности 75—80%. Отсутствие боковых групп, способствующее максимальному сближению цепей, создает благоприятные условия для кристаллизации полимера. Полиэтилен, полученный другим способом (под высоким давлением), имеет ответвления от основной цепи, препятствующее сближению цепей. Такой полиэтилен кристаллизуется хуже. [c.23]

    Боковые ответвления очень сильно сказываются на степени кристалличности и на свойствах полимеров. Боковые метильные и этильные группы препятствуют образованию участков с упорядоченным расположением цепей (кристаллитов), поэтому чем меньше ответвлений, тем больше кристаллическая часть. Полиэтилен низкого давления, молекулы которого построены практически в виде линейных цепей, содержит 80—90% кристаллической фазы, а полиэтилен высокого давления — 55—65%. [c.97]

    Полиэтилен. Строение полиэтилена схематически представлено на рис. 2. Степень кристалличности, зависящая от числа боковых цепей в молекулах полимера, закономерно возрастает от обычного полиэтилена, приготовленного полимеризацией под высоким давлением, к полимеру, получаемому при применении новых твердых катализаторов. Боковые цепи, связанные с главной цепью полимера, создают аморфные зоны, так как нарушают регулярность строения, обусловливающую кристалличность продукта. Кристалличность обычного промышленного полиэтилена вследствие значительной разветвленности его строения, составляет примерно 60—70% [82]. Полиметилен, полученный разложением дпазометана, имеет линейную цепь, состоящую из метиленовых групп кристалличность его превышает 95% [54]. Между обеими этими крайностями находятся новые типы полиэтиленов со степенью кристалличности в пределах 70-95%. [c.290]

    Одним из путей уменьшения кристалличности мембран является использование разветвленных полимеров. Так, линейный полиэтилен имеет степень кристалличности 70—80%, в то время как разветвленный — 50—60% [14]. Можно полагать, что глубокий перегрев расплавов (на 100—150 °С выше температуры плавления), который приводит к образованию полностью изотропной системы, также может способствовать снижению кристалличности волокон и пленок. При этом большую роль играет скорость охлаждения расплава [9]. Если температуру расплава быстро снизить до температуры стеклования полимера, го скорость кристаллизации практически становится равной нулю, а продолжительность кристаллизации — бесконечно большой. Согласно уравнение Колмогорова— Аврами [c.78]


    Динамико-механические свойства и влияние на них кристалличности и поперечных связей были изу1 ены Баккареда, Бутта [527—529] и другими [530—531] на полиэтиленах различной степени кристалличности полученного по методу Циклера полиэтиленов высокого давления и трех образцов, подвергнутых облучению в атомном котле в течение различного времени, т. е. сшитых и почти полностью аморфных. Определялась скорость распространения звука в образцах, модуль Юнга и температура перехода. Наряду с температурой стеклования Tg и температурой плавления кристаллитов Т , авторы наблюдали третью точку перехода T , расположенную на несколько десятков градусов выше Tg и характерную для полимеров с поперечными связями или достаточно выраженной кристалличностью. Авторы полагают, что при T полностью развивается сегментальная подвижность цепочек, начинающая проявляться при Tg. Кристалличность и ковалентные поперечные связи смещают Tg и Tf в сторону более высоких температур и обусловливают максимум на кривых потерь однако при очень высоких степенях [c.233]

    Более интересен случай, когда Tg лежит намного ниже комнатной температуры. Примером таких полимеров является полиэтилен. Если степень кристалличности полиэтилена невысока (плотность 0,90—0,92 г/ш ), предел текучести и модуль упругости несколько зависят от скорости деформации, однако только при скоростях растяжения порядка 2,5 10 ж/ли наблюдается заметное снижение удлинения при разрыве . Для полиэтилена высокой плотности (около 0,96 г/см ) также наблюдается некоторая зависимость модуля упругости и предела текучести от скорости растяжения (см. табл. 5). При скоростях меньших 5 см1мин полиэтилен высокой плотности склонен к холодному течению. Однако когда скорость повышается до 50 см1мин, никакого холодного течения не наблюдается и образцы разрушаются при деформации порядка 15—30%. Таким образом, при увеличении скорости растяжения от 5 до 50 см1мин происходит переход от механизма пластического разрушения к хрупкому. Аналогичное изменение механизма разрушения в случае кристаллического полипропилена наблюдается в том же диапазоне скоростей (табл. 5). [c.396]

    Применение этого метода для определения степени кристалличности полиэтилена и других полиолефинов при комнатной температуре оказалось весьма успешным. Для ряда полиэтиленов со степенью кристалличности е, равной 59—93%, расхождение между величинами е, определенными рентгенографическим методом и методом ЯМР, не превышало 1,8%, причем, как указывал автор, метод ЯМР имел преимуш,ества лучшую воспроизводимость, нечувствительность к ориентации. Смит использовал метод ЯМР при изучении ряда полиэтиленов и сополимеров этилена с пропиленом и бутеном-1. На графике (рис. 40) степень кристалличности — удельный объем полимера точки, полученные методом ЯМР и рентгенографическим методом, ложатся на одну прямую. Близкие значения 8 дает и ИК-спектроскопия. Хорошее согласие между значениями степени криста.иличности, определенными методом ЯМР и по плотности, для ряда образцов полиэтилена с разной степенью разветвленности отмечают также Фушилло и Зауэр Однако попытки распространения метода определения кристалличности по Вильсону и Пейку на другие полимеры и применения метода в широком интервале температур не дали удовлетворительных результатов. Для полиэтилена и найлона [c.160]

    Теплоемкость расплава обсуждалась Вундерлихом (1962). Рис. III. 16 показывает экстраполированный вклад отдельных составляющих в теплоемкость. Черными точками указана теплоемкость, экстраполированная из измерений на частично кристаллических полимерах. Температура стеклования лежит в области 240 К, что находится в хорошем соответствии с результатами измерений коэффициента расширения, проведенными Мэгилом, Ползком и Вайманом (1965) на полиэтилене со степенью кристалличности 40... 50%. Различный вклад в теплоемкость вносят следующие составляющие Семь опти- [c.170]

    Достоинством метода определения 0(Х) по степени набухания является то, что нет необходимости определять исходный молекулярный вес полимера [по крайней мере в приблил<енном уравнении (54)] или распределение по молекулярным весам до образования поперечных сшивок, а также сравнительная простота измерений. Но теоретические основы метода и погрешность, обусловленная незнанием точной величины входящего в уравнение (54) параметра х, нуждаются в обосновании. Например, Чарлзби и Дэ-висон установили, что 0 Х) для полиэтилена алкатен при облучении уменьшался при повышении температуры со 115 до 180° С, если измерения проводили методом определения степени набухания. Если же для измерений использовали метод растворимости, значение 0(Х) увеличивалось. В последней работе Чарлзби, Фон Арним и Келлеган воспользовались уравнением (53) только для сравнения выходов поперечных сшивок, образовавшихся в полиэтилене различной степени кристалличности, и не пытались даже рассчитать величины 0(Х) для каждого образца полиэтилена. Уоддингтон 8 скорректировал свои расчеты (метод не указан) по фракции золя, оставшейся в облученных образцах. [c.415]

    Боковые группы в полиэтилене понижают степень кристалличности полимера, поскольку они, вероятно, не входят в состав кристаллической решетки линейного полиэтилена . Степень кристалличности сополимеров может быть рассчитана но площади пиков термограммы, величины которых прямо пропорциональны истинной теплоте плавления или теплоте, затрачиваемой на плавление кристаллической части полимера (см. раздел Б-16). Иа рис. 196 приведен график зависимости степени кристалличности, вычисленной из термографических данных, от концентрации боковых групп для двух типов разветвленных полиэтиленов. В изученном интервале концентраций боковых групп для каждого типа сополимеров степень кристалличности уменьшается почти линейно с увеличением числа боковых разветвлений. Этильные группы препятствуют кристаллизации в большей степени, чем метильные. Влияние скорости охлаждения на кристалличность также в большей степени проявляется при увеличении количества боковых групп. Для медленно отожженных образцов сополимеров с низкой концентрацией боковых разветвлений значения степени кристалличности, рассчитанные из данных рентгеноструктурного анализа, совпадают со значениями, полученными методом ДТА. Однако для сополимеров с высокой концентрацией боковых групп чначения степени кристалличности, полученные методом рентгеноструктурного анализа, значительно выше. Частично такое несоответствие может быть отнесено за счет неточности применяемых поправок для учета рассеяния от аморфной части сополимера и определения фона [27]. [c.300]

    Степень кристалличН Ости полиэтилена низкого и среднего давления колеблется от 65 до 78%. Размеры отдельных кристаллитов составляют 360—390 Л. Плотность такого полиэтилена равна 0,935—0,95 г см . Кристаллиты также образуют отдельные сферолиты температурный интервал плавления кристаллитов 124—131 °С. Боковые ответвления в макромолекулах полиэтилена вы.сокого давления препятствуют образованию полимера с высокой. степенью кристалличности. Степень кристалличности таких полиэтилено1в не превышает 53%, размеры кристаллитов колеблются в пределах 180—190 А. Плотность полиэтилена. высокого давления составляет 0,9175—0,930 г/см . С повышением температуры степень кристалличности понижается и увеличивается доля аморфной фазы. Согласно теоретическим расчетам, полиэтилен высокого давления при различных температурах должен содержать следуюш,ее количество кристаллической фазы  [c.243]

    Наиболее важным фактором, определяющим способность полимера к кристаллизации, является его геометрическая регулярность, под которой подразумевается конфигурация цепи. Установлено, что стереорегулярные полимеры, изотактические и синдиотактические, способны кристаллизоваться, а атактические - нет. Например, линейный полиэтилен имеет высокорегулярную конфигурацию и, следовательно, обладает высокой степенью кристалличности (90%). Однако при переходе к разветвленному полиэтилену кристалличность снижается до 40%. Обнаружено, что разветвленные полиэтилены кристаллизуются намного хуже, чем линейные. На рис. 7.4 показано структурное различие между линейным и разветвленным полиэтиленом. Хорошо видно, что разветвление придает молекулярной структуре нерегулярность, понижая при этом способность макромолекул плотно упаковьшаться и, следовательно, кристаллизоваться, причем степень этого влияния определяется типом разветвления. [c.143]

    Два последних высокомолекулярных алифатических углеводорода (полиэтилен и гидрированный полибутадиен) уникальны в том отношении, что они представляют собой примеры нерегулярно разветвленных структур. Фокс и Мертин при изучении инфракрасных снектров углеводородов в области 3—4 [л обнаружили полосу поглощения при 3,38 ц в спектре полиэтилена, которая является характеристической областью колебаний связи С—Н в метильных группах. Было определено, что соотношение СНз составляет от 1/д до 1/70- Все эти величины значительно превышают частоты, которых следовало ожидать, если бы полимеры представляли собой линейные углеводороды. Многие исследователи с тех пор способствовали детальной расшифровке инфракрасных спектров полиэтилена. Наиболее полные и точные исследования провели Рагг [28] и Кросс [9]. Последняя работа представляет особый интерес, поскольку в ней была определена зависимость между интенсивностью поглощения метильных групп и плотностью полимера. Степень кристалличности полиэтилена была определена при помощи нескольких различных методов, основанных, например, на измерениях плотности инфракрасных спектров, дифракции Х-лучей и теплоемкости. Ни один из этих методов не принимался за абсолютный, но метод, основанный на определении плотпости полимера, по-видимому, один из дающих наиболее достоверные данные. Поэтому Кросс впервые установил, что существует тесная зависимость между числом метильных групп в нолиэтиленах и их кристалличностью. [c.169]

    Так, известны различные методы получения полиэтилена. Первоначально промышленный метод заключался в проведении процесса при температуре около 200°С и давлении 1200—2000 атм при возбуждении реакции небольшими добавками кислорода. Однако в настоящее время полиэтилен получают при менее высоком и даже при атмосферном давлении в присутствии катализаторов. Хорошие результаты получены в случае применения в качестве катализатора триэтилалюминия А1(С2Н5)з совместно с четыреххлористым титаном Т1С14. Описано применение катализатора, состоящего из 8Юг и АЬОз с нанесенной на них окисью хрома, и др. В зависимости от условий процесса и вида катализатора получается полиэтилен с различным средним молекулярным весом, с различной степенью разветвленности цепей, степенью кристалличности и соответственно различными свойствами.  [c.562]

    Аналогично полиэтилену низкого давления из пропилена, растворенного в бензине (60—70 °С, 6-10 -10-10 Па) в присутствии 0,3% катализатора (АЦСгНд)) и Т1С11), получают изотактический полипропилен. Благодаря высокой степени кристалличности он превосходит по своим свойствам полиэтилен. [c.192]

    Приведенная схема объясняет постепенное увеличение количества поперечных связей в облучаемом полиэтилене. Образование низкомолекулярных углеводородов связано, по-иидимому, с отщеплением от полимерных цепей коротких боковых ответвлений. Присутствие кислорода в процессе облучения приводит к разрыву макромолекул и образованию перекисных мостиков. Постепенно полимер становится жестким и утрачивает растворимость, одновременно снижается и степень кристалличности полимера. [c.213]

    По мере повышения содержания хлора н полиэтилене pe. к() изменяются его физико-механические свойства. При хлорировании полиэтилен постепенно начинает утрачивать присущую ему кристалличность и становится высокоэластичным н каучуко-иодобным полимером, по свойствам напоминающим поливинн. -хлорид, содержащий большое количество пластификатора. По мере увеличения содержания хлора и снижения степени криста,I-личности полимера его эластичность возрастает, достигая максимума при 15—20%-ном содержании хлора, одновременно умень-П1ается и прочность полимера. Минимальная прочность хлорированного полиэтилена соответствует. 35—38%-ному содержанию хлора (рис. 70). При еще большем содержании хлора полимер [c.220]

    Закалка и отжиг низкокристаллических полимеров, таких, как полиэтилен-терефталат, изучены совершенно недостаточно. Отжиг существенно повышает степень кристалличности ПЭТФ, при этом его хрупкость и прочность увеличиваются [25]. В некоторых случаях наблюдаются явления перекристаллизации и частичные переходы от складчатой морфологии к морфологии полностью выпрямленных цепей. Влияние отжига на величину модуля упругости при растяжении изотактического полипропилена иллюстрируется рис. 3.11. Увеличение температуры отжига приводит к почти двукратному увеличению модуля. Относительное удлинение при разрыве, как и следовало ожидать, при этом уменьшается. [c.57]

    У поликристаллических полимеров типа ПЭВП наблюдается непрерывное падение к с ростом температуры. В зависимости от степени кристалличности эффект проявляется в большей или меньшей степени. Это показано на рис. 5.11 для обоих типов полиэтиленов — высокой и низкой плотности. Интересно также отметить, что при Т а Тт. чем меньше степень кристалличности, тем ниже коэффициент теплопроводности. Изменение значения к в зависимости от температуры и степени кристалличности для поликристаллических полимеров также составляет 30—40 %. [c.121]

    Благодаря наличию большого числа дефектов в кристаллитах полимера (в отличие от кристаллов низкомолекулярных веществ) мы можем количественно определить доли кристаллической и аморфной частей в закристаллизовавшемся полимере. В зависимости от природы полимера и условий кристаллизации доля крис таллической части может колебаться от 20 до 807о- В поливинил хлориде и в каучуках степень кристалличности даже меньше 2 %. Натуральный каучук обычно кристаллизуется на 10—15% и ли1пь при многолетнем хранении — на 25%. Напротив, в специально полученном линейном полиэтилене степень кристалличности мо жет достигать 95%. [c.174]

    Регулярность структуры. Кристаллизоваться могут только такие полимеры, молекулы которых построены регулярно. Б гомополимерах может возникнуть нерегулярность за счет разного пространственного расположения заместителей. Поэтому к кристаллизации способны только стереорегулярные полимеры. Чем больше нарушений регулярности в полимере, тем меньше содержание его кристаллической части. В таких промышленных полимерах, как полистирол или полиметилметакрилат, заместители расположены нерегулярно, эти полимеры аморфны и не содержат кристаллической части. Поливинилхлорид содержит сильно полярные атомы хлора, которые взаимно отталкиваются и поэтому значительная часть макромолекул поливинилхлорида построена относительно регулярно даже при получении полимера методом эмульсионноГ полимеризации. Поэтому поливинилхлорид частично кристаллизуется. В полиэтилене нет заместителей, поэтому полиэтилен мог Оы быть идеально кристаллическим. Однако в условиях синтеза в макромолекулах его возникают разветвления, которые нарушают регулярность, и это приводит к снижению степени кpи тaJrличнo ти в тем большей степени, чем больше разветвлений. Так, полиэтилен, полученный путем разложения диазометапа (так называемый полиметилен), является полностью линейным. Степень кристалличности достигает в нем 95%. Полиэтилен высокой плотности, полученный на катализаторах Циглера — Натта, разветвлен в большей степе- [c.182]

    Вулканизация. Образование пространственной сетки в расплаве гомополимера создает препятствия для вхождения сегментов полимера в состав кристаллической решетки. Поэтому чем гуще сетка, тем меньше степень кристалличности. Невулканизова)шый на туральный каучук при хранении кристаллизуется и твердеет, резина из того же каучука не кристаллизуется ири хранении. В полиэтилене, облученном в расплаве ионизирующей радиацией, снижается степень кристалличности и Т ц. за счет образования кристаллитов с большей дефектностью. [c.183]

    Полиэтилен низкого давления отличается более высокой плотностью, находящейся в пределах 0,94—0,96 г1см . Поэтому для полиэтилена низкого давления часто применяют название полиэтилен высокой плотности отдельные сорта полиэтилена классифицируются по степени плотности. Этот полиэтилен выгодно отличается от полиэтилена высокого давления повышенной температурой плавления (120—125° С). Высокая температура плавления, так же как и повышенная плотность, обусловлены более высокой степенью кристалличности полимера. С этой же особенностью структуры связан более высокий предел прочности при растяжении 220—320 кгс/см . [c.98]

    У полиэтилена среднего давления тоже большая плотность (0,96—0,97 г1см ), высокая температура плавления (127—130° С) и значительная степень кристалличности (85—93%). Механические свойства у него такого же порядка,-как у полиэтилена низкого давления. По диэлектрическим свойствам полиэтилен среднего давления не уступает полиэтиленам, полученным другими способами. [c.99]

    Кристалличность полимеров обнаруживается электроне- и рентгенографическими исследованиями (полиэтилен, политетрафторэтилен, полиамиды, поливинилидеихлорид и др.). Оказалось, что закрис-тализованные области в полимерах перемежаются с неупорядоченными участками. Например, степень кристалличности линейного полиэтилена достигает 80%. [c.394]

    Новые твердые пли копирующие-катализаторы приводят к образованию-так называемых стереорегулярных полимеров, характеризующихся высокой степенью упорядоченности их молекулярного строения. Применение этих катализаторов позволяет получать полиэтилен практически правильного линейного строения. Вследствие линей-Рис. 1. Изотактическая (а) и синдиотак- ности парафиновой цепи такой политическая (6) структуры с плоскими цс- этилен отличается большей степенью пями [68]. кристалличности, повышенной плот- [c.284]

    Полиэтилен низкого давления обладает большей степенью кристалличности (75—85%), более высокой температурной текучестью. Полиэтилен высокого давления менее кристалличен (55—677о), поэтому покрытия имеют большую эластичность. Технологические параметры процесса напыления полиэтилена высокого и низкого давлений несколько отличаются последний требует более высоких температур оплавления. [c.121]


Смотреть страницы где упоминается термин Полиэтилен кристалличности степень: [c.343]    [c.275]    [c.309]    [c.208]    [c.556]    [c.183]    [c.828]   
Энциклопедия полимеров Том 3 (1977) -- [ c.3 , c.514 ]




ПОИСК





Смотрите так же термины и статьи:

Кристалличности

Кристалличность степень кристалличности

Полиэтилен кристалличность

Степень кристалличности



© 2024 chem21.info Реклама на сайте