Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплопроводность закон основной

    Основной закон теплопроводности — закон Фурье  [c.137]

    УРАВНЕНИЕ ФУРЬЕ - ОСНОВНОЙ ЗАКОН ТЕПЛОПРОВОДНОСТИ [c.41]

    Приравнивая основной закон теплопроводности Фурье и закон Ньютона, можно получить уравнение, характеризующее условия на границе раздела потока и стенки аппарата  [c.720]

Рис. 64. Иллюстрация к определению основного закона и уравнения теплопроводности Рис. 64. Иллюстрация к <a href="/info/1058499">определению основного закона</a> и уравнения теплопроводности

    Основной закон теплопроводности, установленный Фурье, подтверждает, что количество теплоты dQ (кДж), переданное теплопроводностью, пропорционально градиенту температуры dt/dl, времени dz и площади сечения dF, перпендикулярного направлению теплового потока, [c.720]

    Закон Фурье позволяет найти плотность теплового потока, а следовательно, и тепловой поток через произвольную поверхность [см. (1.3)], если известно температурное поле в изучаемой области пространства. В теории теплопроводности закон Фурье привлекается при выводе основного уравнения теории — уравнения теплопроводности (см. 1.4). Закон Фурье, наряду с другими подобными законами (о них пойдет речь ниже), позволяет получить замкнутое математическое описание процессов конвективного тепломассообмена, а также сложных (с учетом переноса энергии излучения) процессов тепломассообмена. [c.22]

    Д) С 5 —тепловые потери в окружающую среду, которые вызываются теплопроводностью стенок аппарата, переходом тепловой энергии в лучистую и конвекцией. В основе подсчетов величины Qs лежат законы теплопередачи. Учение о теплопередаче составляет обширную область знания, которая при современном ее состоянии дает достаточно точные методы вычисления тепло-потерь. В большинстве случаев основные теплопотери в произ-водственных процессах происходят за счет теплопроводности стенок аппарата. Эти потери тепла подсчитываются по уравнениям  [c.86]

    По основному закону теплопроводности количество тепла, проходящее через единицу поверхности за единицу времени, пропорционально градиенту температуры в направлении, перпендикулярном поверхности. Коэффициент пропорциональности X называется коэффициентом теплопроводности. В векторной форме этот закон записывается в виде  [c.393]

    Основное уравнение теплопроводности (закон Фурье) для распространения тепля в направлении х можно написать следующим образом  [c.101]

    Основные методы измерения численных значений коэффициента теплопроводности базируются на законе Фурье [Л. 1-1]. [c.15]

    Для процессов теплоотдачи режим движения рабочей жидкости имеет очень большое значение, так как им определяется механизм переноса теплоты. При ламинарном режиме перенос теплоты в направлении нормали к стенке в основном осуществляется вследствие теплопроводности. При турбулентном режиме такой способ переноса теплоты сохраняется лишь в вязком подслое, а внутри турбулентного ядра перенос осуществляется благодаря интенсивному перемешиванию частиц жидкости. В этих условиях для газов и обычных жидкостей интенсивность теплоотдачи в основном определяется термическим сопротивлением пристенного подслоя, которое по сравнению с термическим сопротивлением ядра оказьшается определяющим. Следовательно, как для ламинарного, так и для турбулентного режима течения вблизи самой поверхности применим закон Фурье (уравнение (5.3)). [c.181]


    Основная задача конвективного теплообмена довольно сложная, и решение ее зависит от нескольких переменных. Детально она будет рассматриваться в последующих главах. Однако между общей проблемой конвекции н чистой теплопроводностью имеется много общего, о чем говорилось в гл. 1 , в связи с формулировкой закона охлаждения Ньютона. Мы используем это положение о важности конвективного теплообмена, чтобы установить граничные условия для тех задач, которые будут рассмотрены в этой главе. [c.61]

    Распространение пламени в горючей газовой смеси вне зависимости от механизма воспламенения (теплопроводностью при медленном горении или ударной волной при детонации) подчиняется основным законам газовой динамики и, следовательно, может быть описано уравнениями сохранения массы, количества движения и энергии. [c.218]

    Уже сравнительно давно стало известно, что в металлах валентные электроны покидают свои атомы, образуя как бы электронный газ, пронизывающий кристаллическую решетку металла. Наличие электронного газа является основной причиной высокой электропроводности (ст) и теплопроводности (X) металлов. С помощью таких представлений можно объяснить, хотя и не очень легко, закон Видемана — Франца [c.138]

    Плотность потока теплоты, вызванного стремлением системы к термодинамическому равновесию, определяется законом Фурье-см. уравнение (3.16). Тогда основное уравнение переноса субстанций для случая переноса теплоты (нри условии неразрывности потока несжимаемой жидкости, постоянстве теплоемкости с и теплопроводности Х жидкости, а также при отсутствии источников теплоты, т. е. у = 0) записывается так  [c.52]

    Изучая явление теплопроводности в телах, Фурье сформулировал основной закон распространения тепла путем теплопроводности Количество переданного тепла пропорционально падению температуры. Времени и площади сечения, перпендикулярного направлению распространения тепла , т. е. [c.12]

    Большинство процессов в пищевой технологии протекают в условиях подвода и отвода теплоты. Процессы темперирования и повышения концентрации пищевых сред осуществляют в специальных аппаратах, в которые подаются теплоносители — в основном пар, воздух или горячая вода. Тепловые процессы, протекающие при обработке пищевых продуктов, подчиняются законам теплопередачи. При этом теплофизические свойства объектов обработки оказывают решающее влияние на механизм теплообмена. По-разному осуществляется теплообмен в зависимости от вязкости продукта в жидких средах посредством конвекции, в вязких продуктах посредством конвекции и теплопроводности, в твердых телах посредством теплопроводности. [c.719]

    Приведенные выше решения задач теплопроводности для движущегося полубесконечного стержня могут быть использованы для нахождения распределения температуры в растущих кристаллах, а также при анализе некоторых других тепловых задач, возникающих при получении монокристаллов по методу Чохральского. Рассмотрим случай, когда внутренние источники тепла отсутствуют. Если /1>8гц, то температурное поле в кристалле можно считать стационарным. В данном случае можно использовать решения задач теплопроводности (V.87) и (V.93), полагая в них ( в = 0. Для подсчета температуры по этим формулам нужно знать а, и физические параметры материала кристалла X, р и а. Последние в решения входят как постоянные. Физические параметры германия X, р и й в расчетных формулах были взяты при температуре кристаллизации. Линейный закон теплообмена с боковой поверхности кристалла был принят для возможности получить точное решение сформулированной задачи. В действительности тепло с боковой поверхности кристалла отдается в основном путем излучения. Поэтому а и /о.с в рассматриваемом случае являются величинами условными и одна из них может быть принята такой, чтобы при этом не нарушался физический смысл процесса теплообмена, В общем случае для любой системы экранирования значения а могут быть получены из расчета лучистого теплообмена элемента кристалла со всеми окружающими его поверхно- [c.155]

    Таким образом, использование уравнений, соответствующих основным законам сохранения, позволяет получить выражения для коэффициента поглощения и скорости распространения звуковых волн в вязкоупругих теплопроводных средах, к которым относится больщинство твердых полимеров. [c.242]

    ОСНОВНОЙ ЗАКОН ТЕПЛОПРОВОДНОСТИ [c.47]

    Основным законом передачи тепла в неподвижной среде (молекулярной теплопроводностью или кондукцией) является закон Фурье, согласно которому тепловой поток пропорционален градиенту температуры  [c.22]

    Метод обобщенных переменных составляет основу теории подобия. Одним из основных принципов теории подобия является выделение из класса явлений (процессов), описываемых общим законом (процессы движения жидкостей, диффузии, теплопроводности и т. п.), группы подобных явлений. [c.64]


    Соотношения (101) и (102) справедливы только для систем, состояние которых мало отличается от равновесного, т. е. для систем в так называемой линейной области неравновесной термодинамики. Однако эта область охватывает широкий круг явлений, описываемых линейными законами Фурье для теплопроводности. Ома для электричества, Фика для диффузии и т. д. С помощью этих соотношений могут быть легко выведены основные соотношения для таких перекрестных явлений, как термодиффузия (появление градиента концентрации в первоначально гомогенной среде под влиянием градиента температур), термоэлектрический потенциал (возникновение электрического потенциала под действием градиента температур), диффузионный термоэффект (появление температурного градиента в результате диффузии газа), эффекты, обратные перечисленным, и т. д. [c.321]

    Обозначим через угол между поверхностью пламени и перпен, икуляром к стенке, считая этот угол положительным, когда внутри него находится исходная смесь, и отрицательным, когда внутри него находятся продукты горения. Для нахождения угла ср рассмотрим вектор градиента температур VT. Согласно основному закону теплопроводности—закону Фурье, проекция этого вектора на любое направление связана с тепловым потоком q в этом направлении соотношением [c.274]

    Теплопередача представляет собой процесс передачи тепла из области с более высокой температурой в область с более низкой температурой, который имеет место почти при каждом физическом явлении. Все те многочисленные процессы, которые описываются передачей тепла внутри тела нлн между телами н окружающей средой, являются объектами изучения на основе законов термодинамики. Разность температуры представляет собой характерное свойство тепловой энергии, которое и предопределяет интенсивность теплообмена. Традиционно процесс теплопередачи подразделяют на три основных вида, а именно теплопроводность, конвективный и лучистый теплообмен. В большинстве случаев при решении инженерных проблем важно знать вклад каждого из этих видов теплопередачи. При анализе задач теплообмена зачастую приходится иметь дело с двумя или тремя видами теплопередачи, действующими одновременно. Поэтому необходимо уметь различать каждый из них и применять в соответствии с определяющими их законами. [c.11]

    Закон Фурье. На основанип опытного изучения нроцесса распространения тепла в твердых телах Фурье установил основной закон теплопроводности, который гласит, что количество тепла переданного теплопроводностью, пропорциоЕ[ально градиенту температуры [c.121]

    Подставив найденное значение температурного градиента в уравнение (6.5), выражающее основной закон теплопроводности, получим уравнение теплопроводности плоской стенки при установившемся тепловом режиме  [c.114]

    Основным законом, описывающим все типы контактного теплообмена, является закон теплопроводности Фурье (см. уравнение (4) из 2.1.2). Основным законом п теории массопереноса является закон диффузии Фика, описываемый уравиеиием (5) 2.1.2. Это уравнение, однако, применимо только п том случае, когда коэффициенты диффузии всех компопемтов равны, а полный поток массы [c.88]

    Основной закон массоотдачи, или конвективной диффузии, был впервые обнаружен Щукаревым при изучении кинетики растворения твердых тел. Нелишне заметить, что этот закон япляетея, в определенной мере, аналогом закона охлаждения твердого тела, сформулированного Ньютоном (как законы Фика являются аналогами законов теплопроводности, сформулированных Фурье). [c.266]

    Закон Фурье. Основным законом передачи тепла теплопроводностью является закон Фурье, согласно которому количество гтпла dQ, передаваемое посредством теплопроводности через элемент поверхности Р, перпендикулярный тепловому потоку, за время йх прямо пропорционально температурному градиенту поверхности йр и времени йх  [c.264]

    Уравнения (228) и (229) представляют собой основной закон теплопроводности (уравнения Фурье) для изотропных и анизо- [c.151]

    Одним из основных принципов теории подобия является выделение из класса явлений, описываемого обпшм законом (процессы движения жидкостей по трубам и каналам, процессы диффузии, теплопроводность я др.), группы подобных явлений. [c.52]

    Величина коэффициентов теплопроводности газов на порядок меньше теплопроводности жидкостей. Поэтому газы обладают самой низкой теплопроводностью из всех веществ. Низкий коэффициент теплопроводности теплоизоляционных материалов (диатомито вые земли, шлаковая вата, торф, пробка) обусловливается их пористостью. Поэтому тепловой поток в таких материалах является в основном процессом теплопередачи через воздух, заключенный в порах. Твердое вещество таких материалов не позволяет воздуху приходить в состояние движения от разности температур, а тем самым и предотвращает передачу дополнительного количества тепла конвективными токами. Закон Фурье для процессов теплопередачи весьма напоминат закон Ома для электрического тока. В этом можно легко убедиться, если уравнение (1-6) написать в следующей форме  [c.27]

    Величину теплового потока 2, возникающего в теле вследствие теплопроводности при некоторой разности температур в отдельных точках тела, определяют по закону Фуръе-основному закону теплопроводности  [c.267]

    Вычисление полной энергии, затрачиваемой в процессе, и составление теплового баланса основано на первом законе термодинамики. Основной задачей, решаемой при рассмотрении теплопередачи, является расчет температурных полей для различных моментов времени и точек внутри системы. Распределение температур в массе резиновой смеси зависит от условий теплоотдачи на граничных поверхностях, характера теплопроводности, теплофпзи-ческих свойств материала, наличия и интенсивности тепловыделения внутри самой системы (распределенных тепловых источников при автогенных процессах). [c.138]

    Указано, что основные процессы фильтрования описываются о бщим законом, по которому скорость процесса определяется отношением движущей силы к сопротивлению [459]. Введено понятие крэффицнента фильтруемостй, соответствующего коэффициентам вязкости, теплопроводности и диффузии. Дан расчет образования [c.375]

    Понятие массы количественно характеризуюет материалы по их способности участвовать в основных явлениях переноса подобно коэффициентам диффузии, теплопроводности и электропроводности в уравнениях Фика, Фурье и Ома соответственно и вязкости в законе внутреннего трения (3.10.2). [c.673]

    Теория построена на следующих предположениях о физических процессах и механизме химических реакций, протекающих при горении пороха температура перехода твердое тело — газ считается постоянной коэффициенты диффузии и теплопроводности газа одинаковы скорость химической реакции подчиняется аррениусов-скому закону с большой энергией активации, так что, в основном, химическое превращение происходит в зоне с максимальной температурой горения. Теория Я- Б. Зельдовича описывает связь между скоростью горения, кинетическими характеристиками химической реакции, давлением и начальной температурой. В ней учтены все известные в то время факторы о горении — непрерывный характер химических реакций, роль теплопроводности и т. л. [c.269]

    Закон Фурье, На основании опытного изучения процесса распространения тепла в твердых телах Фурье установил основной закон теплопроводности, который гласит, что количество тепла dQ, переданного теплопроводностью, пропорционально градиенту температуры dtjdn, времени dx и площади сечения dF, перпендикулярного направлению теплового потока, т. е. [c.111]


Смотреть страницы где упоминается термин Теплопроводность закон основной: [c.8]    [c.150]    [c.47]    [c.267]    [c.361]    [c.52]   
Тепловые основы вулканизации резиновых изделий (1972) -- [ c.9 , c.10 , c.126 ]




ПОИСК





Смотрите так же термины и статьи:

Закон основной



© 2025 chem21.info Реклама на сайте