Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Возникновение электрических скачков потенциала на металлах

    Пр погружении металла в электролит в результате взаимодействия между ними возникает разность электрических потенциалов, что связано с образованием двойного электрического слоя, т. е. несимметричного распределения заряженных частиц у границы раздела фаз. Причинами возникновения этого скачка потенциала между металлом и электролитом являются  [c.104]


    Возникновение скачка потенциала на границе раздела фаз вызывается различными причинами, зависящими от природы граничащих фаз. Одной из наиболее общих причин будет обмен заряженными частицами. В момент появления контакта между фазами он протекает преимущественно в каком-либо одном направлении, в результате чего создается избыток частиц данного знака заряда по одну сторону границы раздела и их недостаток по другую. Такой нескомпенсированный обмен приводит к созданию двойного электрического слоя, а следовательно, к появлению разности потенциалов. Последняя в свою очередь будет влиять на кинетику обмена, выравнивая скорости перехода заряженных частиц в обоих направлениях. По мере увеличения разности потенциалов наступит момент, когда уже не будет больше преимущественного перехода частиц из одной фазы в другую, и скорости их перехода в обоих направлениях станут одинаковыми. Такое значение скачка потенциала отвечает равновесию между фазами, при котором электрохимические потенциалы заряженных частиц в обеих фазах равны. Заряженными частицами, принимающими участие в обмене между фазами, могут быть положительные и отрицательные ионы, а также электроны. Какие именно частицы переходят из одной фазы в другую и тем самым обусловливают возникновение скачка потенциала, определяется природой граничащих фаз. На границах металл — вакуум или металл 1 —металл 2 такими частицами являются обычно электроны. При создании границы металл — раствор соли металла в обмене участвуют катионы металла. Скачок потенциала на границах стекло — раствор, а также ионообменная смола — раствор появляется в результате обмена, в котором участвуют два сорта одноименно заряженных ионов. На границах стекло—раствор и катионитная смола — раствор такими ионами являются ионы щелочного металла и водорода на границе анионитная смола — раствор — ион гидроксила и какой-либо другой анион. При контакте двух не смешивающихся жидкостей, каждая из которых содержит в растворенном виде один и тот же электролит, потенциал возникает за счет неэквивалентного перехода обоих ионов электролита из одной фазы в другую подобно тому, как образуется диффузионный потенциал. Следовательно, оба потенциала — и фазовый жидкостный, и диффузионный —не являются равновесными. [c.204]

    При погружении металлической пластинки в воду некоторая часть ионов металла с поверхности пластинки в результате взаимодействия с молекулами воды переходит в раствор, прилегающий к поверхности пластинки. Металл заряжается отрицательно, и возникающие электростатические силы препятствуют дальнейшему течению этого процесса. В системе устанавливается равновесие. Указанные процессы приводят к возникновению двойного электрического слоя и скачка потенциала между отрицательно заряженной пластинкой и слоем положительно заряженных ионов в растворе. При погружении металла в раствор его соли наблюдается аналогичная картина, но равновесие наступает при другом скачке потенциала, зависящем не только от свойств металла, но и от концентрации (точнее, от активности) ионов в растворе. Толщина двойного электрического слоя в разбавленных растворах составляет сотни ангстрем, а в концентрированных уменьшается до нескольких ангстрем. [c.216]


    Источником электрической энергии в электрохимической цепи, содержащей два различных металла, служит свободная энергия химической реакции. Однако знание источника энергии еще не означает, что известен механизм возникновения разности потенциалов в такой цепи. При выяснении вопроса о механизме образования э. д. с. в электрохимии возникли две проблемы проблема Вольта и проблема абсолютного скачка потенциала. [c.158]

    Ранее был рассмотрен вопрос об условиях возникновения двойного электрического слоя на границе металл — вода или металл — раствор соли, содержащей ионы, одноименные с металлом ( 155). После установления равновесия в такой системе можно всегда констатировать наличие скачка потенциала между заряженной поверхностью металла и жидкостью. Этот скачок потенциала обозначим буквой ф. Его называют термодинамическим потенциалом. [c.322]

    Еще в начале прошлого века было замечено, что форма поверхности ртутной капли, находящейся в растворе, зависит от сообщенного ей заряда. Если с поверхности ртути периодически снимать заряд, что достигается, например, с помощью укрепленной иглы, то капля ртути начинает совершать сложные движения ( ртутное сердце ). Это явление можно объяснить, если предположить, что поверхностное натяжение ртути зависит от возникновения двойного электрического слоя на металле и, следовательно, от скачка потенциала на границе ртуть —раствор. Наблюдать такую зависимость очень удобно с помощью капиллярного электрометра (рис. 70), который состоит из двух ртутных электродов, сообщающихся при помощи разбавленного раствора серной кислоты. Один из электродов — анод (ртуть в каломельном полуэлементе 4) обладает большой поверхностью и при прохождении тока практически не поляризуется другой же электрод, поляризуемый током,—катод — находится в тонкой стеклянной трубке 2, заканчивающейся капилляром. Вследствие весьма ограниченной поверхности катода (капля ртути) потенциал его может быть изменен в широких пределах в зависимости от величины приложенного заряда. [c.209]

    В силу особого положения поверхностных частиц в твердом веществе у них имеется избыток свободной энергии по сравнению с энергией внутренних частиц. При тесном контакте двух фаз на границе их раздела возможны переходы поверхностных частиц из одной фазы в другую, если это сопровождается уменьшением свободной энергии С системы. Если обе фазы построены из самостоятельно существующих заряженных частиц, то из-за их перехода из фазы в фазу в неэквивалентных количествах в поверхностном слое каждой фазы возникают электрические заряды, равные по величине, но противоположные по знаку. Образуется двойной электрический слой, разность зарядов между обкладками которого обусловливает скачок потенциала. Рассмотрим, три случая возникновения скачка потенциала на границе металл — раствор электролита. [c.192]

    У поверхности металла свободные электроны являются носителями отрицательного заряда. У поверхности металла образуется двойной электрический слой, характеризующийся разностью (скачком) потенциалов между поверхностью металла и слоем раствора, прилегающего к поверхности металла. Причина возникновения скачка потенциалов - переход катионов из металла в электролит (рис. 3.1, а) или из электролита на металл (рис. 3.1, б) (так называемый электродный потенциал металла). [c.28]

    Возникновение электрических скачков потенциала на металлах [c.74]

    Величина электродного потенциала в общем случае не совпадает ни с нернстовским потенциалом, ни с разностью между нернстовскими потенциалами металла и электрода Н+/Н2, Р1, так как включает в себя еще и контактный потенциал между данным металлом и платиной. Понятие об электродном потенциале поэтому сложнее, чем понятие о скачке потенциала между электродом и раствором и не может быть сведено к нему. Так называемая физическая теория электрохимических систем, сформулированная Вольта еще в начале прошлого века, отводила особое место контакту между двумя разнородными металлами. По этой теории э.д.с. электрохимической системы считается равной вольта-потенциалу между двумя разнородными металлами, а скачок вольта-потенциала между металлом и раствором принимается равным нулю. Возникновение тока в электрической системе объясняется при этом следующим образом. Если привести в непосредственное соприкосновение два различных металла (рис. 25,а), то э.д.с. не возникнет, так как [c.201]

    До сих пор были рассмотрены электрические явления на границе разнородных фаз, в частности металла и раствора его соли, и показано, что образование двойного электрического слоя на этой границе приводит к возникновению скачка потенциала (или межфазной разности потенциалов). [c.49]

    Вторая теория объясняет возникновение скачка потенциала на границе раздела металл—раствор переходом ионов с поверхности металла в раствор, за счет чего образуется двойной электрический слой. Этот слой находится в равновесном состоянии, которое может быть смещено в какую-либо сторону при изменении условий, например концентрации ионов металла в растворе. [c.89]


    Переход энергии химической реакции в энергию электрического тока и обратно происходит в электрохимических системах, состоящих из электролитов и электродов. Электрод — система, состоящая из двух фаз, одна из которых является электролитом, а др5 гая — металлом или полупроводником. Между, компонентами фаз происходит реакция (электродный процесс), сопровождающаяся переходом электрических зарядов из одной фазы в другую и возникновением скачка потенциала на границе их раздела. [c.454]

    В другом случае соприкосновения двух фаз ион, например металла, переходит в раствор, что приводит к возникновению электрических зарядов у обеих фаз, участвующих в обмене, и образованию двойного электрического слоя. Последний характеризуется величиной скачка электрического потенциала на границе раздела фаз. [c.359]

    Механизм возникновения потенциала на водородном электроде практически не отличается от рассмотренного ранее (см. 11.1) молекулярный водород адсорбируется платиной, распадается на атомы, которые окисляются образовавшиеся ионы гидратируются молекулами воды, переходят в раствор подобно тому, как они переходят из кристаллической решетки металла ионы водорода могут также переходить из раствора на поверхность платины, образуя двойной электрический слой с соответствующим скачком потенциала. Потенциал водородного электрода зависит от температуры, концентрации ионов водорода в растворе и давления водорода на поверхности электрода. Если на электроде протекает реакция 2Н+ + - -2е На, то [c.176]

    Переход заряженных частиц через границу раздела фаз сопровождается нарушением баланса электрических зарядов в каждой фазе и приводит к возникновению двойного электрического слоя, которому соответствует скачок потенциала. Рассмотрим границы раздела фаз и возникающие на них скачки потенциалов в электрохимической системе, которая представляет собой правильно разомкнутую цепь а обоих концах такой цепи находится один и тот же металл (рис. 169). В такой цепи следует учесть скачки потенциалов на границах раздела фаз вакуум —М1 (точки 1—2) М1 —Мц (точки [c.469]

    При погружении металлической пластинки в воду некоторая часть ионов металла с поверхности пластинки в результате взаимодействия с молекулами воды переходит в раствор, прилегающий к поверхности пластинки. Металл заряжается отрицательно, и возникающие электростатические силы препятствуют дальнейшему течению этого процесса. В системе устанавливается равновесие. Указанные процессы приводят к возникновению двойного электрического слоя и скачка потенциала между отрицательно заряженной пластинкой и слоем положительно заряженных ионов в растворе. При погружении металла в раствор его соли наблюдается аналогичная картина, но равновесие на- [c.179]

    Чем больше молекулярный вес поверхностно активного вещества (больше групп СНа, входящих в углеводородный радикал), тем большей активностью обладает добавка. Как уже отмечалось, действие растворимых поверхностно активных веществ обусловлено возникновением на металле адсорбционного слоя, образующегося вследствие миграции молекул или ионов из объема раствора и ориентации их на поверхности раздела Поэтому существенное значение при применении поверхностно активных веществ имеет их растворимость. Однако многие вещества, будучи практически не растворимыми в воде, также обладают способностью образовывать на поверхности раздела адсорбционные слои, которые могут быть обнаружены в результате исследования изменений величин, характеризующих процесс адсорбции (изменение поверхностной энергии, скачка потенциала на этой поверхности, емкости двойного электрического слоя и т. п.). [c.344]

    Строение двойного электрического слоя. Определите его роль в возникновении скачка потенциала на границе металл-раствор и влияние на кинетику электродных процессов. [c.117]

    В последние годы область непо сред ственного контакта металла с окружающей средой (в основном — вакуума) получила свое физическое обоснование лишь благодаря успехам в области теории неоднородного электронного газа металла (см. [48 -52,13] и библиографию к ним), основанной преимущественно на методе функционала электронной плотности. Применимость данного метода для границы металл - жидкость весьма затруднительна, поскольку сама жидкость также обладает ориентированным слоем поверхностных молекул, ответственных за возникновение скачка потенциала со стороны жидкой фазы. Однако несомненно, что на этой границе не последнее влияние оказывает плотность электронного газа металла и ее распределение вблизи поверхности ( электронные хвосты ). В связи с трудностями интерпретации поверхностных явлений в первом приближении целесообразно использовать простые феноменологические представления и определить с их помощью ту группу параметров, которые формируют свойства поверхности и ее электрические характеристики. Основываясь на фундаментальных законах электростатики, можно безмодельно описать межфазную границу металл - раствор и ответить на главный вопрос — какие факторы и в какой степени формируют скачок межфазного потенциала, т. е. решить проблему Вольта. [c.37]

    При погружении металла в раствор его собственных ионов химический потенциал их в металле и растворе неодинаков. Это приводит к возникновению ионного двойного слоя, появляющегося в первый момент после погружения электрода в раствор вследствие перехода некоторого количества ионов из одной фазы в другую. Скачок потенциала ф между пластинами такого конденсатора пропорционален плотности заряда е двойного электрического слоя, т. е. [c.16]

    Электронно-статистическая модель двойного электрического слоя, использующая теорию неоднородного электронного газа металла, дает возможность с единых позиций описать механизм возникновения скачка потенциала, а также такие характеристики ДЭС, как емкость и поверхностное натяжение в достаточно хорошем согласии с экспериментом. Показано, что предпочтение из поляризационного и электронного вкладов в энергию ДЭС должно быть отдано второму. Однако решение вопроса о вкладе поляризационных мод не доведено до логического завершения и осуществлено лишь на качественном уровне. Необходим анализ взаимодействий на микроскопическом количественном уровне. [c.98]

    Замедление процесса коррозии при введении индивидуальных адсорбционных ингибиторов связано, главным образом, с изменением в строении двойного электрического слоя, с возникновением дополнительного положительного адсорбционного скачка потенциала и уменьшением свободной поверхности корродирующего металла в результате экранирования части ее адсорбированным ингибитором. Скопление ингибитора на поверхности корродирующего металла обусловлено преимущественно электростатической адсорбцией, а также специфической адсорбцией I рода, зависящей, в основном, от свойств частиц ингибитора и от заряда металла [12]. [c.36]

    Если начальная скорость перехода ионов из раствора на металл больше скорости перехода ионов с металла в раствор, металл заряжается положительно, а раствор у поверхности металла — отрицательно за счет избытка анионов. Вследствие электростатического взаимодействия уменьшается скорость перехода иоиов из раствора на металл и yвeличивaef я скорость обратного процеса. Обе скорости сравниваются образуется двойной электрический слой (рис. 124, б) и возникает определенный скачок потенциала. Двойной электрический слой способствует возникновению электродного потенциала. [c.288]

    Как было сказано выше, при погружении металла в раствор его ионов происходит процесс, который приводит к образованию двойного электрического слоя, а следовательно, и к возникновению скачка потенциала между обкладками двойного слоя. [c.35]

    Несколько упрощенно картину возникновения электродного скачка потенциала можно представить следующим образом. Возьмем медную пластинку, опустим ее в раствор Си304. Ионы меди находятся одновременно в кристаллической решетке металла и в растворе. Перевод их из металла в раствор характеризуется работой, равной разности энергий выхода иона из металла А и гидратации иона в растворе /р. Для рассматриваемого случая А > (Ур, в результате чего ионы меди будут переходить из раствора в кристаллическую решетку, и медная пластинка зарядится положительно. Это означает, что электрические потенциалы металла и раствора (гальвани-потенциалы Ч ") также изменятся. [c.281]

    Величина потенциала на границе фаз. Граница раздела двух фаз всегда является местом возникновения скачка потенциала. Соприкасается ли металлический проводник с раствором соли того же металла или же соприкасаются два диэлектрика — обе соприкасающиеся фазы заряжаются разноименными электрическими зарядами. Между фазами возникает таким образом разность, или скачок, потенциала и 0 0 образуется вследствие этого двой- [c.166]

    Советским электрохимикам удалось создать тонкую экспериментальную методику исследования электродных процессов оо-строение поляризационных кривых в стационарных и нестационарных условиях, метод с использованием переменных токов, ос-циллографический метод, позволяющий установить временную зависимость потенциала электрода при пропускании тока постоянной силы, метод меченых атомов и др. Новые инструментальные методы раскрыли перед исследавателями более широкие горизонты. Так, было показано, что основным фактором, определяющим возникновение скачка потенциала на границе между металлом и раствором, является двойной электрический слой из зарядов металла и ионов раствора. Было найдено, что на условия появления и величину скачка потенциала между металлом и раствором большое влияние оказывает адсорбция и ориентация дипольных молекул. Сопоставление данных, полученных при изучении электрокапиллярных я влений, пролило яркий свет на роль поверхностно активных и коллоидных веществ, адсорбирующихся на поверхности электродов. [c.3]

    В результате платина получает положительный заряд, а раствор у поверхности ее — отрицательный заряд за счет образовавшегося избытка ионов С1 . Равновесие в двойном электрическом слое выразится уравнением Ре +е s f Pe2. " Таким образом, возникает положительный потенциал на платине, который будет тем выше, чем больше окислительная способность катиона. И, наоборот, чем сильнее восстановительная активность иона, тем вероятнее отдача электрона им в кристаллическую решетку платины и возникновение отрицательного заряда на ней. Так появляется отрицательный потенцйал на платине в растворе, содержащем ионы Ст . В двойном слое устанавливается равновесие Сг з Сг + е. Потенциал платины в разобранных двух примерах определяется соотношением активных концентраций окисленной и восстановленной формы ионов и характеризует окислительновосстановительную способность каждой из систем Ре , Pe Pt и Сг2, r Pt. Потому потенциал и получил название окислительновосстановительного. Отметим, что это название сохранилось за потенциалами систем только в тех случаях, когда в электродной реакции не участвуют непосредственно металлы газы, хотя очевидно, что во всех случаях причиной возникновения скачка потенциала является окислительно-восстановительный процесс на поверхности электрода, приводящий к образованию двойного электрического слоя и потенциала в нем. Следовательно, потенциал характеризует окислительно-восстановительные свойства системы. [c.195]

    Переход заряженных частиц через границу раздела фаз сопровождается нарушением баланса электрических зарядов в каждой фазе и приводит к возникновению двойного электрического слоя, которому соответствует скачок потенциала. Рассмотрим границы раздела фаз и возникающие на них скачки потенциалов в электрохимической системе, которая представляет собой правильно разомкнутую цепь а обоих концах такой цепи находится один и тот же металл (рис. 169). В такой цепи следует учесть скачки потенциалов на границах раздела фаз вакуум —Mi (точки 1—2) Mi —Мц (точки 3—4) Мц —раствор L (точки 5-—б) раствор L —Mi (точки 7—8) Mi —вакуум (точки 9—10), где М —металл. Потенциал х. отвечающий работе переноса элементарного положительного заряда из глубины фазы в точку в вакууме, расположенную в непосредственной близости к поверхности фазы, называется поверхностным. В рассматриваемой. цепи поверхностные потенциалы возникают между точками / и 2, а также 9 и 10. Разность внутренних потенциалов соседних фаз называется гальвани-пот нциалом. В цепи, представленной на рис. 169, гальвани-потенциалы возникают на границах фаз точки 3—4-, точки 5—6 точки 7—S. Э. д. с. этой цепи представляет собой сумму скачков потенциалов  [c.469]

    Химическая теория, развивавшаяся В, Нернстом, исходила из того опытного факта, что возникновение электрического тока в гальванических элементах связано с протеканием химических реакций, дающих необходимую для их работы энергию. Поэтому В. Нерист считал, что э. д. с. полностью определяется суммой скачков потенциала на границах металл — раствор. Однако нри этом в химической теории совершенно обходился вопрос о скачке потенциала на границе между металлами, который в действителыюсти существует. [c.246]

    Мы рассмотрели частный случай возникновения разности потенциалов за счет окислительно-восстановительного процесса вытеснения одного металла другим, но вообще любая реакция, идущая с изменением степеней окисления, может служить источником электрической энергии. Чтобы получить электрический ток, т. е. заставить электроны двигаться по проводнику, нужно упорядочить хаотический обмен связями и электронами. Обычно для этой цели используют инертные электроды, не посылающие свои электроны в раствор, а именно Р1, Сграф т. Так это и было сделано в нормальном водородном электроде (см. рис. 122) поверхность губчатой платины насыщали водородом, который, частично диссоциируясь на атомы, давал скачок потенциала с раствором ионов Н+(Н.зО" ). [c.236]

    Деформационное локальное расширение решетки вблизи поверхности металла ведет к отсасыванию электронов из соседних областей, в том числе из френкелевского двойного слоя, вследствие выравнивания уровня Ферми. Возникновение локального потенциала деформации растянутой области сопровождается изменением в противоположном направлении потенциала областей, которые выполнили функцию донора электронов. Нелокализо-ванные электроны френкелевского двойного слоя наименее прочно связаны с ион-атомами остова кристаллической решетки (относительно электронов внутренних областей) и в первую очередь втягиваются в растянутые области кристалла, оголяя поверхностный монослой ион-атомов остова решетки, несущих положительный заряд. В результате такого перетекания электронов образуется двойной электрический слой, состоящий из отрицательно заряженной обкладки — растянутых подповерхностных областей кристалла и положительной обкладки — монослоя выдвинутых наружу положительных поверхностных ион-атомов. Для краткости будем называть такой двойной слой, обусловленный деформацией, внутренним двойным слоем металла. Одновременно изменяется структура френкелевского двойного слоя вследствие частичного ухода в металл внешних электронов и в связи с этим уменьшается тормозящий выход электронов из металла скачок потенциала, а следовательно, уменьшается работа выхода электронов (уровень химического потенциала электронов внутри металла сохраняется). [c.98]

    Для более полного представления об э. д. с. гальванических цепей следует ввести понятие о потенциале нулевого заряда — о нулевой точке металла. Как было показано ранее, возникновение двон1юго слоя на границе металл — раствор связано с односторонним переходом ионов металла в раствор или же с обратным процессом разряда ионов металла на электроде. В первом случае наружную обкладку двойного слоя образуют катионы, адсорбированные на отрицательно заряженной поверхности металла. Во втором — поверхность электрода несет положительный заряд и на ней вследствие электростатического притяжения адсорбируются анионы из раствора. Наряду с этим вполне возможно, что после погружения металла в раствор ие будет наблюдаться ни перехода катионов в раствор, ни их разряда на электроде. Очевидно, при этом иа поверхности металла отсутствует электрический заряд. Вследствие этого отпадает причина образования ионного двойного слоя и, как полагали некоторое время, вообще возникновения скачка потенциала иа границе металл — раствор. В действительности отсутствие заряда иа поверхности металла не препятствует образованию скачка [ютенциала за счет адсорбции поверхностно-активных ионов из раствора или ориентации дипольных молекул растворителя. [c.58]

    Перемещение электрона из глубины металла в пространство снаружи металла вблизи его поверхности, влекущее за собой возникновение скачка электрического потенциала, в первом приближении не требует точного знания процессов рассеяния, обусловленных периодично стью расположения атомов кристаллической решетки металла, по крайней мере для простых металлов, и описывается хорошо себя зарекомендовавшей квантовой моделью свободньгх электронов Друде - Лоренца - Зоммерфельда [53]. Для общего понимания условий возникновения скачка потенциала на поверхности металла в первом приближении можно пренебречь вкладом от внутренних периодических потенциалов. [c.37]

    Зависимость потенциала нулевого заряда от состава электролита объясняется адсорбцией ионов и полярных молекул на поверхности электрода, что приводит к образованию двойного электрического слоя и возникновению скачка потенциала внутри электролита около поверхности металла. На рис. 37 схематически показана адсорбция анионов из 1-м. растворов, содержащих На2504, КС1, КВг, К1, Кг5, на поверхности металла вблизи потенциала нулевого заряда. Притяжение катионов натрия и калия к слою адсорбированных анионов приводит к образованию двойного электрического слоя у поверхности металла и к появлению скачка потенциала. 14-1016 209 [c.209]

    Так появляется отрицательный потенциал на платине в растворе, содержащем ионы Сг +. В двойном слое устанавливается равновесие Сг +ч=з=Сг ++е-. Потенциал платины в данных примерах определяется соотношением активных концентраций окисленной и восстановительной форм ионов и характеризует окислительно-восстановительную способность каждой из систем Fe +, Fe + Pt и Сг2+, r3+ Pt. Потому потенциал и получил название окислительно-восстановительного. Необходимо отметить, что это название сохранилось за потенциалами систем только в тех случаях, когда в электродной реакции ие участвуют непосредственно металлы и газы, хотя очевидно, что во всех случаях причиной возникновения скачка потенциала является окпслительно-восстанови-тельный процесс на поверхности электрода, приводящий к образованию двойного электрического слоя и потенциала в нем. Следовательно, потенциал характеризует окислительно-восстановительные свойства системы. [c.241]


Смотреть страницы где упоминается термин Возникновение электрических скачков потенциала на металлах: [c.540]    [c.109]    [c.146]    [c.237]    [c.465]    [c.202]    [c.237]   
Смотреть главы в:

Теория коррозии металлов Часть 1 -> Возникновение электрических скачков потенциала на металлах




ПОИСК





Смотрите так же термины и статьи:

Потенциал возникновение

Потенциалы металлов

Скачки потенциала

Скачок потенциала

Электрический потенциал

возникновение



© 2024 chem21.info Реклама на сайте