Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Рентгенограмма и структурные модификации

    По данным рентгеноструктурных исследований, макромолекулы целлюлозы образуют четыре структурные модификации кристаллической ячейки и имеют аморфную часть. При нагревании до 250-300 С кристаллические фрагменты исчезают. Дальнейшее образование гексагональных углеродных пачек (лент) фиксируется на рентгенограммах по линии (002), как правило, выше 300-400 С [В-5]. [c.620]


    В частной системе алюминат натрия — нефелин представляет собой интерес существование кристаллических растворов с кристаллическим габитусом а-карнегиита (см. выше). На очень близкое сходство рентгенограмм алюмината натрия с рентгенограммами обеих модификаций карнегиита указывал Барт Весьма возможна непрерывная смесимость в а-, а также и в р-модификациях так как обе они принадлежат к структурному типу кристобалита (см. А. I, 76). [c.467]

    Характерной особенностью взаимодействия целлюлозы с растворами- гидроокисей щелочных металлов является образование нескольких структурных модификаций щелочной целлюлозы, различающихся между собой по рентгенограммам. Эти модификации при изменении условий (температура, концентрация щелочи, среда) способны к взаимным переходам. [c.134]

    Процесс механохимической деструкции целлюлозы в мельнице ударного типа был исследован Гессом . Уже при сравнительно непродолжительном размоле (1ч при 20 °С) природная целлюлоза теряет упорядоченную кристаллическую структуру, и исчезает характерная для хлопкового, волокна рентгенограмма. Если обработать размолотую целлюлозу водой или другими полярными Жидкостями, особенно при повышенной температуре, происходит рекристаллизация целлюлозы, но образуется другая структурная модификация целлюлозы — появляется рентгенограмма гидратцеллюлозы. [c.185]

    Как и другие эфиры целлюлозы, триацетат целлюлозы может быть получен в нескольких структурных модификациях. Так, например, триацетат целлюлозы I, полученный ацетилированием целлюлозы в гетерогенной среде смесью уксусного ангидрида и бензола при 55 °С, при переосаждении из смеси хлороформа и эфира переходит в иную структурную модификацию — триацетат целлюлозы IP . Переход модификации I в модификацию П обратим, обе модификации находятся в равновесии, зависящем от температуры и характера растворителя. При температурах ацетилирования ниже 30 °С образуется преимущественно ацетат целлюлозы I, независимо от того, применялась в качестве исходного вещества природная целлюлоза или гидратцеллюлоза. При более высоких температурах этерификации природная целлюлоза дает ацетат целлюлозы I, а гидратцеллюлоза — ацетат целлюлозы И. Продукт, полученный после омыления в мягких условиях (раствором едкого натра в метиловом спирте) ацетата целлюлозы I, имеет рентгенограмму природной целлюлозы, полученный при омылении ацетата целлюлозы II — рентгенограмму гидратцеллюлозы. Следовательно, ацетилированием гидратцеллюлозы при низких температурах и последующим омылением в мягких условиях можно перевести гидратцеллюлозу в структурную модификацию природной целлюлозы, т. е. получить тот же результат, который достигается нагреванием препаратов гидратцеллюлозы в полярных жидкостях при высокой температуре (см. гл. 1, стр. 74). [c.332]


    Обе структурные модификации целлюлозы значительно различаются по свойствам, а именно а) по реакционной способности, адсорбционной способности, гигроскопичности и накрашиваемости б) по растворимости как самой целлюлозы, так и ее эфиров. Обе структурные модификации имеют различные рентгенограммы. [c.77]

    Характерной особенностью взаимодействия целлюлозы с растворами гидроокисей щелочных металлов является образование нескольких структурных модификаций щелочной целлюлозы, отличающихся между собой по рентгенограммам, а возможно и по ряду других признаков (в частности, по количеству присоединенной щелочи). Эти модификации при изменении условий обработки (температура, концентрация щелочи, среда) способны к взаимным переходам. Образование нескольких структурных модификаций продукта одного и того же химического состава носит название полиморфизма и наблюдается при различных процессах превращения или этерификации целлюлозы (см. гл. I, стр. 86). [c.184]

    Как видно из рис. 45, для щелочной целлюлозы установлено существование по меньшей мере пяти структурных модификаций, отличающихся между собой по характеру рентгенограмм. Подробное исследование состава этих продуктов, в частности, содержания в них связанной щелочи, а также физико-химических отличий отдельных модификаций, пока еще не проведено. Выяснение этих вопросов представляет большой интерес. [c.186]

    Полученные данные представляют существенный интерес. Уже при сравнительно непродолжительном размоле (1 час при 20°) природная целлюлоза теряет упорядоченную структуру, и характерная для хлопкового волокна отчетливая рентгенограмма исчезает. Если обработать измельченную целлюлозу, полностью потерявшую упорядоченную структуру, водой при 70° или даже при 20°, то снова происходит упорядочение структуры волокна. Однако при этом образуется другая структурная модификация целлюлозы — появляется рентгенограмма не природной целлюлозы, а гидратцеллюлозы. Механическое измельчение целлюлозы является первым и пока единственным случаем, при котором переход структурной модификации природной целлюлозы в модификацию гидратцеллюлозы происходит без химического воздействия на целлюлозу. [c.228]

    Ц. имеет сложную надмолекулярную структуру (см. Структуры надмолекулярные полимеров). На основании данных рентгенографич., электронографпч. и спектроскопич. исследований обычно принимают, что Ц. относится к кристаллич. полимерам (см. Кристаллическое состояние полимеров). Ц. имеет ряд структурных модификаций, основные из к-рых природная Ц. и гидратцеллюлоза. Природная Ц. превращается в гидратцеллюлозу при растворении и последующем высаживании из р-ра, при действии конц. р-ров щелочи и последующем разложении щелочной Ц. и др. Обратный переход может быть осуществлен нри нагревании гидратцеллюлозы в растворителе, вызывающем ее интенсивное набухание (глицерин, вода). Обе структурные модификации имеют различные рентгенограммы и сильно отличаются по реакционной способности, растворимости (не только самой Ц., ной ее эфиров), адсорбционной способности и др. Препараты гидратцеллюлозы обладают повышенной гигроскопичностью и накрашиваемостью, а также более высокой скоростью гидролиза. [c.395]

    Образцы целлюлозы, регенерированной из ее эфиров при высокой температуре, также дают рентгенограмму, идентичную рентгенограмме природной целлюлозы. Если при выделении из ксантогената целлюлозы или из щелочной целлюлозы при обычной температуре целлюлоза всегда получается в структурной модификации гидратцеллюлозы, то при разложении щелочной целлюлозы кипящей водой или при омылении ксантогената целлюлозы при температуре выше 60 °С получается смесь двух структурных модификаций целлюлозы — природной целлюлозы и гидратцеллюлозы Подобный частичный переход гидратцеллюлозы в природную целлюлозу имеет место при денитрации нитрата целлюлозы и омылении ацетата целлюлозы при высокой температуре. Проводя эти процессы при комнатной температуре, получают только одну структурную модификацию — гидратцеллюлозу. Разложение молекулярного соединения целлюлозы с аммиаком горячей водой приводит к препарату, обладающему рентгенограммой природной целлюлозы, разложение холодной водой—к препарату с рентгенограммой гидратцеллюлозы, [c.73]

    Другую структурную модификацию, которая также дает четкие рефлексы на рентгенограмме, вначале связывали с более или менее статистическим распределением водородных связей между соседними молекулами и поворотами макромолекул относительно друг друга [336, 1427, 1429, 1907]. В результате рентгенографических и ИК-спектроскопических исследований различных полиамидов Кн-ношита обнаружил [823, 824], что в подобных структурах большой период несколько меньше, чем это следовало ожидать для вытянутой плоской зигзагообразной цепи полиамида. Этот факт объяснили некоторым скручиванием цепочек за счет поворота плоскости амидных групп относительно плоскости метиленовой цепи (по аналогии со структурой белков). Конформацию макромолекулы, соответствующую такой структурой модификации, он предложил называть у-структурой. [c.316]


    Предположение Германса и Вейдингера об образовании гидратов целлюлозы определенного химического состава, в которых молекулы воды связаны с гидроксильными группами целлюлозы в определенных стехиометрических соотношениях, по нашему мнению, недостаточно обосновано. Однако факт изменения рентгенограммы гидратцеллюлозы при набухании ее в воде имеет существенное значение при характеристике структурных модификаций целлюлозы. [c.77]

    Структурная изомерия отчетливо проявляется не только у самой целлюлозы (природная целлюлоза, гидратцеллюлоза), но и у производных целлюлозы — щелочной целлюлозы, нитратов целлюлозы и ацетилцеллюлозы. Для этих продуктов характерно явление полиморфизма , т. е. наличие препаратов, имеющих один и тот же химический состав, но обладающих различной рентгенограммой и, следовательно, различной структурой. Так, например, для щелочной целлюлозы установлено наличие пяти полиморфных форм, для нитрата целлюлозы — трех форм, для ацетилцеллюлозы — трех форм (см. также гл. П1 и гл. VIII). При действии различных реагентов на производные целлюлозы происходит взаимный переход полиморфных форм (структурных модификаций). [c.86]

    Подчеркнем, что из исследования электронных спектров поглощения двух электронных переходов молекул- зондов фенантрена, мы получаем новую информацию о структурных изменениях 4,6-полиуретана. Наблюдая в спектрах ИК-поглощения 4,6-полиуретана перечисленные выше изменения колебательных частот уретановых групп макромолекул, мы могли бы отнести эти изменения, например, лишь за счет изменений в распределении электронной плотности в уретановых группах. Однако наблюдаемые сложные изменения в спектрах молекул- зондов — анизотропные изменения — свидетельствуют об изменении в характере упаковки макромолекул (см. выше). В результате можно предполагать изменения либо в структуре уретановых групп макромолекул (искажения валентных углов, появление напряженных структур), либо предполагать, что образуется некоторая новая кристаллическая модификация полимера. В известной в настоящее время литературе по 4,6-полиуретану нет никаких данных в пользу какого-либо из этих предположений. Для 4,6-полиуретана, закристаллизованного и подвергнутого отжигу, согласно [19—21], характерна лишь одна кристаллическая модификация — триклинная паракристаллическая псевдогексагональ-ная структура наблюдается лишь у образцов полимера, подвергнутых закалке [19—20]. Наблюдается ли в нашем случае еще какая-то, ранее не известная кристаллическая модификация 4,6-полиуретана — ответ на этот вопрос, в принципе, могли бы дать рентгенографические исследования кристаллической структуры. Однако, как уже отмечалось, изменения в структуре пленок наблюдаются только когда пленки на подложке присутствие кристаллической подложки является помехой для регистрации рентгенограмм полимера. При отделении же от подложек, пленки испытывают релаксацию, и структура их становится такой же, как у свободных пленок. [c.121]

    В процессе переработки, как уже указывалось, происходят структурные изменения полимера. Характерна, например, быстрая кристаллизация при холодной вытяжке. Рентгенограмма нерастянутого моноволокна из сополимера хлористого винилидена с хлористым винилом показывает изотропно кристаллическую структуру при растягивании наблюдается структура, специфичная для ориентированной кристаллической модификации . [c.91]

    Из его ренггекограммы (центральной на рисунке) видно, что в результате фазового превращения магнетит перешел в какое-то другое соединение. Стандартная рентгенограмма этого вещества на рис. 18 не приводится, но установлено, что оно представляет собой одну из низкотемпературных модификаций карбида железа, вероятно РегС. При нагревании его образуется цементит РезС. Постоянная активность катализатора, претерпевающего столько структурных превращений, кажется поистине загадочной. Да и можно ли вообще говорить о единственном катализаторе синтеза углеводородов из окиси углерода и водорода  [c.381]

    Важнейшим физическим свойством каучука является эластичность, причины которой будут рассмотрены в технологической части книги. В каучукоподобном состоянии все вещества аморфны так, сырой каучук при комнатной температуре имеет полностью размытую рентгенограмму. При выдерживании каучука в течение длительного времени при низкой температуре (ниже -Н6°) он становится поликристаллическим, и на рентгенограмме появляются отчетливые интерференционные кольца Дебая — Шерера, которые исчезают при нагревании препарата до 20 . При этой температуре материал плавится и снова становится аморфным, причем процесс перехода из одной модификации в другую у каучука протекает во времени вследствие наличия длинных молекулярных цепей. Если каучук, закристаллизовавшийся при охлаждении, подвергнуть вытягиванию, то кристаллиты ориентируются, и препарат обладает характерной рентгенограммой волокна. Аморфный каучук при вытягивании также переходит в кристаллическое ориентированное состояние. Период идентичности на рентгенограмме волокна равен 8,2 А [см. формулу (42)]. В полностью вытянутом состоянии вещество со структурной формулой (42) г t -кoнфигypaция двойной связи) должно обладать периодом идентичности 9,15 А. По-видимому, молекулярные цени имеют не плоскостную конфигурацию, а слабо скрученную. Аналогично замороженному каучуку, каучук, закристаллизованный при вытягивании, также имеет температуру плавления, т. е. для него осуществляется переход в аморфную фазу. Температура плавления повышается с 20 до 90° при увеличении степени вытягивания от 150 до 700%. При вытягивании изменяется не величина и характер кристаллитов, а прежде всего увеличивается их число. Повышение содержания кристаллической фракции оказывает влияние на свойства каучука разрывная прочность сильно охлажденного аморфного каучука изменяется при вытягивании следующим образом  [c.84]


Смотреть страницы где упоминается термин Рентгенограмма и структурные модификации: [c.240]    [c.33]    [c.431]    [c.135]    [c.85]    [c.181]    [c.443]    [c.39]    [c.287]    [c.99]    [c.286]    [c.105]   
Химия целлюлозы и ее спутников (1953) -- [ c.80 , c.84 ]




ПОИСК





Смотрите так же термины и статьи:

Структурная модификация



© 2024 chem21.info Реклама на сайте