Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нафталин с плоской поверхности

    Другая интересная проблема, касающаяся роста кристаллов, в особенности больших, состоит в том, необходима ли для образования двухмерных центров кристаллизации на совершенной кристаллической грани более высокая степень пересыщения, чем для роста неполностью укомплектованной грани. Еще в 1878 г. Гиббс предположил, что рост кристалла происходит посредством образования на кристаллической грани центров кристаллизации в виде однослойных островков, которые затем быстро растут до границ грани. Фольмер 2, Коссель з и Странский вывели теоретические уравнения для скорости роста, исходя из двухмерного механизма образования центров кристаллизации. Из этих уравнений следует, что для образования центра кристаллизации новой плоскости кристалла при кристаллизации металла из его пара необходимо, чтобы давление пара было на 25—50% выше, чем давление насыщения. Однако Фольмер и Шульц показали, что кристаллы нафталина, ртути и фосфора могут быть выращены из пара при пересыщении всего в 1%. Теоретически при таком пересыщении рост может иметь место только за счет атомов, попадающих на плоскую поверхность в соответствующее положение благодаря термическому возбуждению, и скорость роста должна быть в 10 ниже, чем наблюдаемая в действительности Такое колоссальное расхождение было в конце концов объяснено Фрэнком как результат роста по винтовой дислокации, которая схематически изображена на рис. 13. Очевидно, что кристалл с такого рода несовершенством может расти посредством выдвигающихся по спирали плоскостей, и не возникает никакой необходимости в образовании центров кристаллизации на плоской поверхности. Описано много случаев визуальных наблюдений роста кристаллов по спирали. При конденсации из [c.159]


    Двумерная поверхностная нуклеация. Еще в 1878 г. Гиббс [41] предположил, что рост кристалла происходит посредством образования на кристаллической грани центров кристаллизации в виде однослойных островков, которые затем быстро растут до границ грани. Фольмер [42], Коссель [43] и Странский [44] вывели теоретические уравнения для скорости роста, исходя из двумерного механизма образования центров кристаллизации. Для такого образования центров кристаллизации необходимо наличие критической степени пересыщения процесс образования центров кристаллизации при этом повторяется для каждого нового слоя кристаллов. Следовательно, такой механизм роста кристаллов имеет место лишь в том случае, когда концентрация превысит некоторый определенный критический уровень пересыщения, при низких значениях пересыщения он невозможен. Так, Фольмер и Шульц [45] показали, что кристаллы нафталина, ртути и фосфора могут быть выращены из пара при пересыщении всего в 1%. Если механизмом роста было двумерное образование центров кристаллизации, то при таком пересыщении рост происходил бы только за счет атомов, попадающих на плоскую поверхность в соответствующее положение благодаря термическому возбуждению, и скорость роста должна быть в 10 ° ° ниже [46], чем наблюдаемая в действительности Как было показано, при низких значениях пересыщения рост может происходить за счет винтовой дислокации. [c.169]

    По этому уравнению Бокрисом с сотр. [43, 44] была рассчитана энергия адсорбции нафталина на железе, никеле и меди. Предполагалось, что молекула нафталина на поверхности никеля и железа располагается плоско(га=6), а на меди вертикально(га=2). [c.206]

    Есть ли различие в характере химических связей в плоских циклических ароматических структурах типа бензола, нафталина и т д, и сферических структурах, где, казалось бы, имеются те же самые кольца, но расположенные на поверхности сферы  [c.378]

    Выполнив ряд последовательных изотермических разрезов и спроектировав их ортогонально на горизонтальную плоскость, получают плоскую диаграмму с семейством изотерм, позволяющих судить о характере поверхностей ликвидуса и солидуса. Подобная диаграмма фазового равновесия для тройной системы инден — изохинолин — нафталин приведена на рис. 1.19. [c.40]

    Однако сопоставление скачков потенциала (АЕ) на границах раствор — ртуть и раствор — воздух в случае ароматических соединений приводит к сильным расхождениям как по величине, так в ряде случаев и по знаку АЕ. Так, например, для орто- и паракрезола АЕ на границе ртуть — раствор соответственно равны —0,20 и —0,29 в, тогда как на границе воздух — раствор они имеют значения +0,01 и +0,26 в. Вначале сдвиг т. н. з. в отрицательную сторону в случае адсорбции на ртути ароматических соединений был связан с более плоской ориентацией молекул на поверхности ртути, при которой облегчается взаимодействие отрицательных атомов полярных групп с металлом. Однако в работах Геровича [40, 41] было показано, что такие соединения, как бензол, нафталин, антрацен, фенантрен и хризен, несмотря на их неполярный характер, также смещают т. п. з. в отрицательную сторону, причем адсорбируемость этих соединений при > О возрастает с увеличением числа бензольных колец в молекуле органического вещества. Эти результаты дали основание предположить, что аномальное поведение ароматических соединений на границе ртуть — раствор связано не только с их более плоской ориентацией, но и с особенностями строения бензольного кольца. [c.186]


    Даме и Грин [295] определяли потенциальную и концентрационную зависимости адсорбции бензола, нафталина и фенантрена на золотых электродах из водного 1 н. раствора H SO радиоизотопным методом, описанным Бломгреном и Бокрисом [290] и упоминавшимися выше Вробловой и Грином [295]. Как и на ртути, степень адсорбции зависела от потенциала в случае этилена максимум находился при +0,50 В (H.B. э.). Кривая имела колоколообразный вид. Анализ адсорбционных данных показал, что молекулы нафталина на поверхности электрода лежат плоско, и поэтому взаимодействие тт-орбита-лей с металлом, особенно при положительных зарядах поверхносхи электрода, приводит к большей энергии адсорбции, чем у аналогичных (например, у декалина см. [322]) ациклических молекул. [c.506]

    Об ориентации молекул в адсорбционном комплексе относительно поверхности можно судить по изменению интенсивности полос этих колебаний адсорбированной молекулы, величины которых связаны с векторным полем ее диполей (см. главу III). Наибольшая информация в этом случае может быть получена при установлении соответствия между геометрией адсорбированных молекул и геометрией силового поля поверхности адсорбента, т. е. в основном для случая адсорбции на кристаллических адсорбентах. Интересные результаты для такого случая были получены при исследовании колебательных спектров ароматических соединений (I, 3, 5-трихлорбензола, дифенила, нафталина на поверхности AgJ и анилина, фенола, о-, м-, п-фенилендиами-на и ж-ксилола на поверхности КВг, Na l и Т1С1 [5], а также при исследовании колебательных спектров синильной кислоты, адсорбированной на галоидных слоях [6]. Характер наблюденного изменения интенсивности полос поглощения колебаний, совершающихся перпендикулярно плоскости бензольного кольца у молекул с симметричными заместителями, указывает на плоское расположение кольца на поверхности в этом случае и на наклонное расположение кольца относительно поверхности в случае несимметричных заместителей. Так, изменение спектра ацетилена и метилацетилена, адсорбированных на окиси алюминия [7], послужило основой для выводов об ориентации их молекул относительно поверхности. [c.421]

    Сопоставление опытных значений Уд для алкадиенов с сопряженными связями с расчетом, в котором использовались атом-атомные потенциальные функции для 5 ]э -гибрндизироваиного атома С у сопряженных связей молекулы, указывает на несколько большую энергию взаимодействия этих атомов С с графитом [18]. Для бензола получено согласие опытных значений с рассчитанными с использованием атом-атомной потенциальной функции для атома С молекулы в состоянии р -гибридизации [18]. Приближенный молекулярно-статистический расчет для адсорбции бензола, нафталина, антрацена и фенантрена дал также результаты, близкие к полученным из газохроматографических опытов [19]. Эти расчеты можно использовать также для идентификации молекул неизвестного строения при газохроматографических анализах и для изучения строения молекул с помощью газовой хроматографии на плоской поверхности графитированной термической санги [20]. [c.39]

    Относительно большие величины захватов при меньшей интенсивности перемешивания расплава и при высоких скоростях кристаллизации можно объяснить ячеисто-дендритной структурой поверхности раздела фаз [4]. Как показывает теория морфологической устойчивости плоской поверхности раздела кристалл— расплав, ячейки или дендриты могут образоваться при скорости кристаллизации большей, чем некоторая критическая скорость кристаллизации (Укрит)> определяемая условиями процесса кристаллизации. Проведенный расчет величин Гкрит показал, что в данном случае в системе нафталин—р-нафтол для разной интенсивности перемешивания расплава значения 1715рит находятся в интервале (1—2)-10 см1сек, т. е. практически во всей области скоростей кристаллизации плоская поверхность раздела неустойчива. При скоростях кристаллизации меньше критических следовало бы ожидать плоского фронта кристаллизации, т. е. отсутствия захвата маточного расплава между дендритами, однако адсорбция примеси по границам зерен и растрескивание гладкой поверхности раздела приводит к захвату расплава и при этих скоростях кристаллизации. Однако при небольших значениях равновесного коэффициента распределения (Ао = 1 -т- 5 или 0,2 1) и скоростях V < Укрит ошибка в определении кд будет небольшой. [c.18]

    На рис. П1-2 приведены результаты исследования процесса отверждения малоперегретого расплава нафталина на плоской охлаждаемой стенке [177]. Мы видим, что толщина отвердевшего слоя монотонно увеличивается при непрерывном падении скорости кристаллизации dbjdx. Это объясняется тем, что с ростом толщины отвердевшего слоя увеличивается термическое сопротивление и соответственно падает количество отводимого тепла. Аналогичные зависимости наблюдаются при кристаллизации других веществ на плоских поверхностях. [c.99]

    В ряду метилгфоизБодных нафталина также сильнее удерживаются производные, в которых метильные заместители находятся в орто-положении (рис. 14.8). Этот рисунок показывает, что в отличие от газовой хроматографии на плоской поверхности неснецифического адсорбента — графитированной термической саже — в случае жидкостной хроматографии на гидроксилированной поверхности силикагеля из н-гексана антрацен выходит много раньше фенантрена. Это связано с тем, что распределение электронной плотности в ангулярно расположенных кольцах фенантрена отличается от такового в антрацене, в молекулах которого кольца расположены линейно, а также с тем, что ориентация таких молекул антрацена относительно неплоской поверхности силикагеля менее выгодна по сравнению с молекулами фенантрена, с ангулярным расположением ядер. [c.229]


    Весьма важно различие строения и положения замещающих алкильных групп в бензоле, нафталине и других ароматических углеводородах с конденсированными ядрами. Алкильные заместители являются электронодонорными, т. е. они увеличивают электронную плотность на бензольном кольце. В соответствии с этим толуол, в отличие от бензола, обладающего только электрическим квадрупольным моментом, имеет и электрический дипольный момент (р= 1,221-10 ° Кл-м). Рассмотрим два ряда изомеров, образующихся при вхождении нискольких алкильных (метильных) заместителей в бензольное кольцо и при вхождении в это кольцо лищь одного алкильного заместителя с нормальной цепью. При увеличении числа метильных заместителей в бензольном кольце до пяти молекула остается плоской (у гексаметилгексана связи с метильными группами выходят из плоскости на небольшой угол около 10°, см. лекцию 10). Поэтому молекулы полиметилбензолов могут ориентироваться на поверхности оптимально для проявления [c.287]

    Действительно, сравнение электрокапиллярного поведения ароматических и соответствующих гидроароматических углеводородов (бензол — циклогексан, нафталин — декалин), проведенное Геро-вичем и сотр. [41, 42], показало, что сдвиг т. н. з. в отрицательную сторону и адсорбция ароматических соединений при сильных положительных поляризациях связаны с эффектом взаимодействия между я-электронами ароматического ядра и положительными -зарядами поверхности ртути. Взаимодействие это облегчено плоским расположением бензольного кольца на границе ртуть — раствор. Последнее создает также иные условия для взаимодействия полярной группы с поверхностью ртути по сравнению с адсорбцией алифатических соединений. [c.186]

    Удерживание на полярных адсорбентах, когда молекулы ориентируются всей своей плоскостью или плоскостью полярной своей части параллельно поверхности адсорбента, сильно зависит от того, насколько плоские или искривленные эти молекулы. Это легко проследить при сравнении удерживания нафталина и дифенила и их различных производных (рис. 12.3). На рис. 12.3, а удерживание возрастает по мере уплощения молекул. В разд. 12.2 указывалось, что удерживание производных -алкилбензолов с увеличением длины алкильной части уменьшается и в связи с тем, что длинные цепи препятствуют параллельной ориентации бензольных колец к поверхности силикагеля. [c.202]

    Известно очень мало сообщений об экспериментальных исследованиях массопередачи от плоской пластины в противоположность многим исследованиям по теплопередаче. В недавней статье Кристиан и Кезиос [24] описывают измерения местных и средних коэффициентов для нафталина, возгоняющегося в поток воздуха, протекающего параллельно оси полого цилиндра. Их результаты показаны на рис. 34. 2. Прямые, проведенные по экспериментальным точкам, описываются уравнениями, отличающимися от уравнений (34. 9) и (34. 10) только коэффициентами, равными соответственно 0,339 и 0,678. Можно было бы ожидать, что эти результаты несколько отличаются от уравнений для плоской пластины из-за кривизны поверхности. Однако для выбранных цилиндров (диаметры 19 и 25,4 мм) радиус кривизны был настолько велик по сравнению с толщиной пограничного слоя, что полученная характеристика оказалась такой же, как для плоской пластины. Число Шмидта для системы воздух — нафталин было равно 2,40. [c.494]

    Тонкая пластинка нафталина толщиной 2,5 мм и площадью 25,8 см помещена в поток воздуха параллельно направлевлю потока. Воздух с температурой О С и давлением 1 ат движется ламинарным потоком со скоростью 15,2 м1сек. В течение какого времени нужно выдерживать пластинку в воздушном потоке, чтобы вес ее уменьшился наполовину Можно принять, что верхняя и нижняя поверхности пластинки остаются в процессе сублимации плоскими. Коэффициент молекулярной диффузии для системы воздух — нафталин равен 0,0185 мУч, а число Шмидта в условиях данной [c.496]


Смотреть страницы где упоминается термин Нафталин с плоской поверхности: [c.296]    [c.192]    [c.303]   
Массопередача (1982) -- [ c.230 ]




ПОИСК





Смотрите так же термины и статьи:

Плоские поверхности



© 2025 chem21.info Реклама на сайте