Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Этилен реакции присоединения

    В соединениях с изолированными двойными связями последние могут вступать в свойственные этилену реакции присоединения либо одновременно, либо постепенно. В соединениях с сопряженными связями реакции присоединения протекают с присущими таким соединениям специфическими особенностями. [c.86]

    Во многих экспериментах определяли равновесный состав реакций присоединения воды к этилену и пропилену в газовой фазе в присутствии жидких или твердых кислотных катализаторов (серной и фосфорной кислот, фосфатов, марганцевых или кадмиевых кислот, окислов металлов и, в особенности, окиси вольфрама на инертных носителях). Большую часть их проводили при 100—400 °С и [c.188]


    Значения константы равновесия реакции присоединения воды к этилену при различных температурах и давлениях приведены в табл. 24. [c.189]

    Были рассчитаны энергии активации и для реакций присоединения хлора к этилену при расчетах также предполагали два возможных механизма — радикальный или бимолекулярный. Их значения оказались близки (28,5 и 25,2 ккал/моль соответственно), однако меньше (при одинаковых условиях), чем для реакций замещения. Ингибирующее действие кислорода и в этом случае говорит в пользу радикального механизма. [c.265]

    Интересные результаты получены при хлорировании смеси этана и этилена (1 1), которые получаются при разделении газов крекинга. Количество хлора, вступающего в реакцию присоединения с компонентами этой смеси, меньше, чем необходимо для взаимодействия с чистым этиленом, им методом можно получить смесь, содержащую 67—68% хлористого этила. Зависимость количества хлора (в %), который реагирует (с замещением или присоединением) со смесью этана и этилена, от температуры представлена на рис. 99. [c.276]

    Почему ароматические молекулы не вступают, подобно этилену, в реакции присоединения по двойным связям В какие реакции они вступают вместо этого  [c.342]

    Плоское строение молекулы и угол между связями 120 позволяют в методе ЛМО считать, что в локализованных а-связях атом углерода участвует гибридными хр -орбиталями. Каждый атом углерода участвует своими тремя электронами в трех таких о-связях двух С—Н и одной С—С. Еще одну связь С—С образуют не участвующие в гибридизации р -электроны, по одному от каждого атома. Так как р -орбитали направлены перпендикулярно плоскости молекулы, их перекрыванием образуется я-орбиталь, электронная плотность которой располагается над и под плоскостью молекулы. Таким образом, связь С=С оказывается двойной симметричной о л -связью. Разделяя связь между углеродными атомами в этилене на о- и л-связь и принимая энергию разрыва о-связи равной Е (С—С) = 347 кДж/моль. можно приписать л-связи в этилене энергию 250 кДж/моль. Таким образом, л-связь (С—С) в этилене менее прочна, чем а-связь, и легче разрывается, чем объясняется склонность этилена к реакции присоединения. [c.107]

    Для атома углерода в этилене, где = Ь имеем = 1,732 — 1 = = 0,732. Индекс свободной валентности 0,732 указывает на высокую способность молекулы этилена к присоединению атомов по месту двойной связи. Чем выше тем более высока активность в реакциях присоединения нейтральных атомов. Индексы 1 обычно характерны для свободных радикалов. [c.113]


    При относительно невысоких температурах (600—700 °С) и атмосферном давлении пропилен разлагается на бутадиен, бутилен, этилен, метан, водород и жидкие продукты сложного состава, выход которых составляет 50% (масс.) на превращенный пропилен. В этих условиях распад аллильного радикала проходит значительно медленнее, чем реакция присоединения его по двойной связи  [c.72]

    Стерические факторы реакций присоединения радикалов СНз к молекулам этилена и пропилена на два—четыре порядка ниже, чем в аналогичных реакциях присоединения Н-атомов к этим молекулам [252]. С усложнением радикала стерический фактор реакции присоединения к молекулам олефина сначала резко уменьшается, но с дальнейшим увеличением длины радикала изменяется все меньше и быстро приобретает предельно низкое значение, не изменяющееся с последующим увеличением длины цепи радикала. Так, переход от метильного к пропильному радикалу в реакции с этиленом сопровождается уменьшением стерического фактора на два порядка, но замена пропильных радикалов амиль-ными или гептильными в той же реакции с этиленом не сопровождается уже изменением порядка величины стерического фактора. [c.204]

    Следует отметить, что фотосенсибилизированная гидрогенизация этилена позволила наряду с рекомбинацией этильных радикалов изучить и реакцию присоединения этильных радикалов к этилену с образованием бутил-радикалов [310]. При этом для отношения стерических факторов реакции присоединения и рекомбинации этильных радикалов [c.238]

    В рассмотренных реакциях присоединения атомов Н к олефинам, атомы водорода в случае молекул пропилена И изобутилена присоединяются к наиболее гидрогенизированному атому углерода в этих молекулах, т. е. в соответствии как бы с правилом Марковникова, которое было сформулировано для взаимодействия молекул олефинов и НХ. Вероятность образования пропильных радикалов из молекул пропилена и атомов Н достаточно велика, так как в условиях крекинга пропильные радикалы по отношению к диссоциации на атомы Н и пропилен довольно устойчивы, но зато они легко распадаются на этилен и СНз-радикалы  [c.255]

    Из рис. 19.4 следует, что уменьшение сил отталкивания снижает энергию активации. Такое снижение происходит при сближении Н с электроноакцепторными группами субстрата. Присоединение -СНд к этилену и тетрафторэтилену подтверждает вывод о повышении скорости реакции. В то же время при атаке радикалом -СНз электронодонорных групп [ОСНз, Ы(СНз)2]Р( и др. происходит увеличение сил отталкивания и снижение скорости реакции присоединения 1104]  [c.175]

    Применение реакции присоединения серной кислоты к этилену сделало диэтилсульфат самым дешевым из диалкилсульфатов. В результате ряда исследований [441] тщательно изучено влияние различных факторов на ход этой реакции, что в основном уже рассмотрено в связи с приготовлением этилсерной кислоты. Диэтилсульфат при 100° может быть удален из сферы реакции током взятого в избытке этилена [442], причем диэтилсульфат конденсируется, а этилен возвращается в реакционную смесь. Возможно также вести процесс таким образом, чтобы полностью абсорбировать этилен под умеренным давлением (несколько атмосфер) [443] согласно нижеприведенной обратимой реакции  [c.76]

    Сероводород может также присоединяться к олефину 9 присутствии алюмокобальтмолибденовых катализаторов (см. гл. 16) с образованием меркаптанов. Реакция присоединения сероводорода к этилену протекает при 280-300°С, давлении 8 атм и соотношении сероводород этилен 4 1 /1/. В реакционной смеси присутствуют также метан или водород. [c.337]

    Катализаторами реакции присоединения хлористого водорода к этилену при 120-200°С служат треххлористый висмут или треххлористая сурьма. Эти же катализаторы применяются в реакции присоединения хлористого водорода к пропилену при комнатной температуре /35/. [c.343]

    Простейшим примером гидрирования является присоединение водорода к этилену — реакция, изучавшаяся многими авторами (на N1 и Р1). При гидрировании водородом, содержащим дейтерий, было показано, что процесс протекает сложнее, чем это ранее предполагалось [110]. Оказалось, что наряду с нормальным гидрированием [c.428]

    Напишите уравнения реакций присоединения иодоводорода к следующим углеводородам 1) пропилену, 2) изобутилену, 3) пропилэтилену, 4) изопропил-этилену, учитывая правило В. В. Марковникова. [c.21]

    Напищите уравнение реакции присоединения брома к акриловой кислоте. Объясните, почему бром присоединяется к а-, р-непредельным кислотам труднее, чем к этилену. [c.76]

    Двойная связь обусловливает повышенную по сравнению с алка-нами реакционную способность алкенов. Они активно вступают в реакции присоединения вследствие разрыва менее прочной я-связи. В качестве примера можно привести реакцию присоединения брома к этилену  [c.256]

    Хлорирование олефипов, основанное па реакции присоединения, имеет особо большое значение для этплепа. При де гствии газообразного хлора на газообразный этилен образуется хлористый этилен (1,2-дихлорэтан)  [c.180]

    Длкены характеризуются ввиду наличия двойной связи высо — кой реакционной способностью в реакциях присоединения, но повышенной, по сравнению с алканами, термостойкостью в отношении реакций распада. Этилен из алкенов наиболее устойчивый. Он всегда содержится в продуктах термолиза нефтяного сырья как первичный и вторичный продукт их превращений. По термической стабильности он занимает промежуточное положение между мета — ном и этаном. Термический распад этилена заметно начинается при температуре 660 С. При 400 — 600 °С в основном протекает его полимеризация [c.32]


    С другой стороны, реакция присоединения галоида к олефинам сильно экзотермична. Так, нанример, при присоединении хлора к этилену высвобождается 41 ООО кал, JlS ° = —27,5 кал/молъ град. При температурах ниже 1000° AF° отрицательно, т. е. равновесие смещено в сторону продуктов присоединения [8]. [c.60]

    При хлорировании этилена реакция замещения дихлорэтилена с образованием трихлорэтана является индуцированной , она ингибитируется кислородом. Дихлорэтилен хлорируется с трудом, если не считать реакции присоединения хлора к этилену. Присутствие 1 % кислорода в смеси хлора с этиленом замедляет реакцию замещения, но полностью ее пе прекращает. Тот же эффект отмечен при хлорировании пропилена и смеси н-бутана с бутеном-2 [30]. Даже в присутствии катализаторов кислород сильно ингибитирует реакции замещения в жидкой фазе. [c.365]

    При более низкой температуре (ниже 600°С) виннльный радикал может вступать только в реакцию присоединения к исход-ному этилену, и цепной процесс развивается по схеме  [c.230]

    С алкенами серная кислота вступает в реакции присоединения. Легче всего взаимодействует кислота с алкенами, содержащими третичный углеродный атом, наиример изобутилен растворяется в 63% Н2304 при комнатной температуре. Вторичные алкены вступают в реакцию с серной кислотой более высокой концентрации. Так, пропилен взаимодействует с 65—70%) кислотой при повышенных температуре и давлении, а для поглощения бутиленов и амиленов нормального строения исшзльзуют 80—90% кислоту. Этилен вступает в реакцию только с 94—98% кислотой. [c.315]

    В четвертой главе рассмотрена проблема стерических факторов обычных (молекулярных) и радикальных реакций как часть проблемы реакционной способности частиц. На основе метода переходного состояния получены формулы для вычисления стерических факторов мономолекулярных и бимолекулярных реакций и зависимости их от температуры. Разработан приближенный метод расчета стерических факторов реакций присоединения и замещения радикалов с непредельными и предельными углеводородами, а также реакций диспропорционированияи рекомбинации радикалов. Этот метод расчета стерических факторов радикальных реакций основан на квантово-механических соображениях и апрокси-мации сумм состояний радикалов при помощи сумм состояний молекул, близких по своему химическому строению к радикалам. Приближенный способ расчета применен к вычислению стерических факторов обратимых реакций присоединения радикалов —Н, СНз к непредельным углеводородам (этилен, пропилен, изобутилен, аллен, ацетилен и др.), обратимых реакций замещения этих радикалов с непредельными и предельными углеводородами (метан, этан, пропан, бута- [c.10]

    ЦИИ присоединения Н-атомов к этилену, оба метода дают согласующиеся значения нредэкспонентов реакций присоединения СНз-радикалов к олефинам. Расхождение в случае реакции этилена с Н по-видимому, связано с недоучетом стерического фактора и небольшой энергии активации реакции. [c.208]

    Рассмотрим пример применения корреляционной зависимости для определения кинетики сходственных реакций. В табл. 19.2 приведены рассчитанные в приближении Хюккеля относительные ЭЛ и ЭС для реакций присоединения радикала -СС1з к галогензамещен-ному этилену. [c.176]

Таблица 19.2. Относительные ЭЛ и ЭС для реакций присоединения СС1з к галогензамещенному этилену Таблица 19.2. Относительные ЭЛ и ЭС для <a href="/info/3083">реакций присоединения</a> СС1з к галогензамещенному этилену
    Бисульфиты медленно присоединяются к олефинам в холодном разбавленном растворе [12]. Существенное значение для реакции имеет присутствие окисляющего агента, например кислорода или нитрита. Это обстоятельство позволило предположить, что можно дать лучшее объяснение механизму реакции, применяя теорию свободных радикалов [12г], так как бисульфит можно превратить в свободный радикал действием окисляющего агента. Скорость присоединения в значительной степени зависит от концентрации водородных ионов. Этилен не реагирует с бисульфитом аммония при значении pH раствора, равнОм 4,8, тогда как для значения pH 5,9 реакция протекает с заметной скоростью. При взаимодействии бисульфита с пропиленом максимум скорости достиг ается в интервале значений pH от 5,1 до 6,1. Бисульфит присоединяется также к изобутилену, триметилэтилену, циклогексену, пинену, дипентену и стиролу. В тех случаях, когда установлено строение продуктов реакции, присоединение происходит не по правилу Марковникова. Так, из пропилена, изобутилепа и стирола получены соответственно соли пропан-1-сульфокислоты, 2-метилпро-пан-1-сульфокислоты и 1-фенилэтан-2-сульфокислоты [12г, е], В последнем примере основным продуктом реакции является 1-фенил-1-оксиэтан-2-сульфокислота в присутствии кислорода, но не других окисляющих агентов, образуется также некоторое количество 1-фенилэтилен-2-сульфокислоты [12е]. [c.107]

    В промышленности гидрохлорирование этилена осуществляют следующим образом. В реактор, содержащий суспензию хлористого алюминия в хлористом этиле или и смеси хлористого этила и дихлорэтана, вводят приблизительно экнимолярные количества совершенно сухих этилена и хлористого водорода. Экзотермическую реакцию присоединения хлористого водорода к этилену проводят при 35—40 и 8 ат. После окончания процесса присоединения хлористый этил отгоняют и очищают фракционированной разгонкой. Остаток состоит из полимерных продуктов. Катализатор непрерывно выводят из реактора, заменяя свежим [187 . [c.425]

    Целью хлорирования насыщенных углеводородов (за исключением метана и твердого парафина) почти всегда является получение монохлорпроизводных. Для производства полихлоруглеводородов в промышленности используют реакции присоединения хлора к ацетилену, этилену и другим ненасыщенным углеводородам с последующим отщеплением хлористого водорода и дальнейшим хлорированием (гл. 10, стр. 167 исл.). [c.87]

    Вследствие движения электронов в молекуле СбНб около всех углеродных атомов энергия электронов уменьшается, следовательно, прочность связи увеличивается. Это объясняет сравнительно малую реакционную способность бензола, который значительно менее склонен к реакциям присоединения, чем этилен и другие непредельные углеводороды. [c.99]

    Этилен С2Н4—родоначальник класса алкенов (олефинов) — ненасыщенных соединений С Н2 . Согласно классической органической химии здесь связь С = С — двойная. Для этилена характерны реакции присоединения по двойной связи типа [c.207]

    Понятие индекс свободной валентности неприменимо для атомов, участвующих в образовании только ст-связей, как, например, в этане. Напротив, для атома углерода в этилене, где К = 4, имеем Рг =4,732— —4 = 0,732. Здесь атом С участвует в трех ст-связях, порядок которых всегда равен единице, и в одной п-связи, имеющей в этилене также поря- док />12 = 1- Индекс свободной валентнос-га 0,732 указывает на способность молекулы этилена к присоединению атомов по месту двойной связи. Чем выше Рг, тем более высока активность в реакциях присоединения нейтральных атомов. Индексы / >1 обычно характерны для свободных радикалов. [c.217]

    Рис. 13.1 я. Геометрия сближения и сечение ППЭ реакции присоединения синглетного метилена к этилену (Дьюар, метод MlNDO/3) на больших расстояниях доминирует ориентация, отвечающая г-гтути прн сближении увеличивается вклад несимметричного о-пути за начало отсчета принята энергия циклопропана [c.522]

Рис. 122. Геометрия сближения (а) и сечение ППЭ (б) реакции присоединения синглетного метилена к этилену (Дьюар, метод МШВО/З). На больших расстояниях доминирует ориентация, отвечающая я-пути. При сближении увеличивается вклад несимметричного а-пути. За ноль энергии принята энергия циклопропана Рис. 122. Геометрия сближения (а) и сечение ППЭ (б) <a href="/info/3083">реакции присоединения</a> синглетного метилена к этилену (Дьюар, метод МШВО/З). На <a href="/info/749293">больших расстояниях</a> доминирует ориентация, отвечающая я-пути. При сближении увеличивается вклад несимметричного а-пути. За ноль энергии принята энергия циклопропана

Смотреть страницы где упоминается термин Этилен реакции присоединения: [c.38]    [c.38]    [c.112]    [c.176]    [c.350]    [c.185]    [c.778]    [c.108]    [c.208]    [c.173]   
Химия и технология моноолефинов (1960) -- [ c.491 , c.504 , c.506 ]




ПОИСК





Смотрите так же термины и статьи:

Реакции присоединения

Реакции этилена



© 2024 chem21.info Реклама на сайте