Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метанол сгорания

    Пример У1-8. Зная теплоту сгорания реагентов, рассчитать тепловой эффект реакции этерификации метанола уксусной кислотой  [c.144]

    Для сравнения приведем расчет теплового эффекта реакции синтеза метанола из водяного газа по теплотам сгорания. [c.57]

    Вычислите изменение свободной энергии, сопровождающее сгорание жидкого метанола  [c.89]


    В метаноле содержание кислорода составляет около 53% поэтому его теплота сгорания невелика —21370 кДж/кг, что почти в два раза меньше, чем у бензина. Для получения из метанола углеводородов с высокой теплотой сгорания используют реакции с выделением всего или части кислорода в молекулах воды. Ниже приведены термодинамические характеристики [c.342]

    Итак, тепловыделение на 1 моль С, переходящий в углеводород, составляет 45—55 кДж образующийся углеводород при сгорании выделит на 6—7% меньше тепла, чем израсходованный на его получение метанол. Поэтому, если нет специальных причин (например, необходимости получения углеводорода для нефтехимических синтезов), более эффективно получение энергии непосредственным сжиганием в двигателе метанола, чем полученного из него углеводорода. Для подтверждения сказанного сопоставим характеристики получения из метанола углеводородов различного строения олефиновых, циклопарафиновых, ароматических, парафиновых с шестью углеродными атомами  [c.343]

    Среди альтернативных моторных топлив значимое место занимают такие кислородсодержащие продукты, как спирты и эфиры. Особенно перспективно применение метил-грег-бутилового эфира (МТБЭ) -эффективного высокооктанового компонента автобензинов (04 (И.М.) = 115-135]. Этот эфир прошел все испытания с положительными результатами, и во многих странах строятся, промышленные установки по его каталитическому синтезу из метанола и изобутилена. Из спиртов как самостоятельный вид топлива и как компонент моторных топлив наиболее перспективны метанол и этанол. Метанол привлекает прежде всего широкими сырьевыми возможностями. Его можно производить из газа, угля, древесины, биомассы и различного рода отходов. Безводный метанол хорошо смешивается с бензином в любых соотношениях, однако малейшее попадание воды вызывает расслаивание смеси. У метанола ниже теплота сгорания, чем у бензина, он более токсичен. Тем не менее метанол рассматривают как топливо будущего. Ведутся также исследования по непрямому использованию метанола в качестве моторных топлив. Так, разработаны процессы получения бензина из метанола на цеолитах типа ZSM. [c.215]

    Можно предположить, что в будущем метанол будет использоваться не только как химическое сырье, но и как топливо для двигателей внутреннего сгорания. [c.234]

    Помимо применения в будущем так называе.мой водородной технологии мы видим целый ряд других путей разрешения проблемы чистых газов. Во-первых, к ним следует отнести использование в качестве источника тепловой энергии высокосернистых видов топлива (топливной нефти, угля) после удаления различными средствами из продуктов сгорания или технологических выбросов серы, что позволит исключить загрязнение окружающей среды во-вторых, возврат к потреблению низкокалорийных газов, в-третьих, применение метанола, производимого из иско- [c.216]


    Использование метанола или его смесей с высшими спиртами в качестве моторного топлива или добавки к бензину связано с рядом трудностей, вызываемых его низкой теплотой сгорания и токсичностью. Этих трудностей можно избежать путем конверсии метанола в углеводородное топливо, отвечающее требованиям, предъявляемым к нефтяным бензинам. [c.116]

    Состав продуктов сгорания различных альтернативных топлив весьма разнообразен. Содержание оксидов азота находится в прямой зависимости от температуры горения топлива. В соответствии с этим максимальный выход оксидов азота получается при использовании водорода (температура горения л 2500 К), а минимальный—аммиака (1956 К). Выход оксида углерода определяется главным образом элементным составом топлива (отношением С И), в соответствии с которым альтернативные топлива по отношению к бензину характеризуются снижением содержания СО (природный газ, метанол) либо полным его отсутствием (водород, аммиак). [c.133]

    Среди различных спиртов и их смесей наибольшее распространение в качеству моторного топлива получили метанол и этанол. Их основными недостатками являются пониженная теплота сгорания, высокая теплота испарения и низкое давление [c.149]

    Наряду с положительной экологической эффективностью использования спиртовых топлив следует отметить и такие негативные явления, как повышенные выбросы альдегидов и испарения углеводородных соединений. Содержание альдегидов растет с увеличением концентрации спиртов в топливной смеси. Для метанола характерны выбросы формальдегида, в то время как при сгорании этанола образуется преимущественно ацетальдегид. Минимальные выбросы альдегидов соответствуют стехиометрическому составу топливной смеси и возрастают при ее обеднении или обогащении. В -среднем выбросы альдегидов при работе на спиртах примерно в 2—4 раза выше, чем при работе двигателя на бензине. Их снижения добиваются при добавке к спиртам воды (до 5%) и присадок к топливу до 0,8% анилина, подогреве воздуха на входе в двигатель. [c.152]

    Высокие антидетонационные свойства метанола в сочетании с возможностью его производства из ненефтяного сырья позволяют рассматривать этот продукт в качестве перспективного высокооктанового компонента автомобильных бензинов, получивших название бензино-метанольных смесей. Оптимальная добавка метанола—от 5 до 20% при таких концентрациях бензино-спиртовая смесь характеризуется удовлетворительными эксплуатационными свойствами и дает заметный экономический эффект. Добавка метанола к бензину снижает теплоту сгорания топлива и стехиометрический коэффициент при незначительных изменениях теплоты сгорания топливовоздушной смеси. Вследствие изменения стехиометрических характеристик использование 15%-й добавки метанола (смесь М15) в стандартной системе питания ведет к обеднению топливовоздушной смеси примерно на 7%. В то же время при введении метанола повышается октановое число топлива (в среднем па 3—8 единиц для 15%-й добавки), что позволяет компенсировать ухудшение энергетических показателей за счет повышения степени сжатия. Одновременно метанол улучшает процесс сгорания топлива благодаря образованию радикалов, активизирующих цепные реакции окисления. Исследования горения бензино-метанольных смесей в одноцилиндровых двигателях со стандартной и послойной системами смесеобразования показали, что добавка метанола сокращает период задержки воспламенения и продолжительность сгорания топлива. При этом теплоотвод из зоны реакции снижается, а предел обеднения смеси расширяется и становится максимальным для чистого метанола. [c.155]

    Анализ проб воздуха и отработавших газов при испытаниях двухтопливных автомобилей на смеси ВМС-75 показал, что для всех контрольных параметров концентрации метанола и его продуктов сгорания находятся ниже действующих норм (I — концентрация вредных веществ при движении автомобиля, П — то же при работе на холостом ходу, мг/м )  [c.170]

    В качестве сырья процесса термокаталитической конверсии наибольшее применение получил метанол, что связано с высоким содержанием водорода в этом продукте (свыше 12%). низкой температурой процесса (200—300°С), его высокой энергетической эффективностью и простотой организации. Согласно термодинамическим расчетам, в продуктах конверсии водных растворов метанола может содержаться до 70% Но. При использовании тепла отработавших газов на каждый моль превращенного метанола утилизируется —75 кДж тепла, благодаря чему теоретический к. п. д. системы газификатор — двигатель внутреннего сгорания повышается примерно на 11%. [c.186]

    С учетом ранее выполненных расчетов [61], а также перспективных оценок на добычу различных видов сырья и затрат на его переработку, в табл. 5.6 приведены технико-экономические показатели производства альтернативных моторных топлив применительно к условиям нашей страны. Расчеты носят ориентировочный характер с допущением, что неопределенность исходной информации учтена разбросом значений в пределах 10— 25%. Показатели производства альтернативных моторных топлив, отличных по теплоте сгорания от нефтяного бензина,— метанола, сжатого и сжиженного газов — приведены в нефтяном эквиваленте. По данным табл. 5.6 четко прослеживается связь двух факторов. При переработке сырья, качество которого ниже качества нефти, энергетический к. п. д. процессов получения топлив снижается, а приведенные затраты возрастают. При переработке более высококачественного сырья доля сырьевой составляющей в общей структуре затрат возрастает, а доля затрат на переработку снижается. Этим объясняется, с одной стороны, более высокий уровень затрат на добычу более высококачественного сырья — нефти, газа, а с другой, — меньший уровень [c.226]


    В годы второй мировой войны метанол уже использовался в качестве моторного топлива для автомобилей (правда, в смеси с бензином). При почти вдвое меньшей, чем у бензина, теплоте сгорания, у метанола более высокое октановое число. Наличие кислорода в молекуле метанола обеспечивает более полное сгорание и уменьшение объема выхлопных газов. В них меньше оксида углерода, практически нет серы и, конечно, нет свинца. [c.134]

    Решение проблемы топлива для двигателей внутреннего сгорания путем использования метанола рассматривается с нескольких точек зрения  [c.127]

    При добавлении небольших количеств метанола (2-7%) к бензину не потребуется реконструкции двигателя. Добавление метанола к топливу приводит к уменьшению вредных выбросов в атмосферу, а октановое число такой смеси с увеличением содержания метанола повышается. Поскольку теплота сгорания метанола почти вдвое меньше, чем у бензина, то можно было бы ожидать, что и объемный расход смешанного горючего возрастет в соответствии с этой разностью. Но, как показали исследования, эти предположения не подтвердились. При добавлении метанола в количестве до 5% не наблюдается увеличения расхода смешанного топлива по сравнению с расходом чистого бензина. При подмешивании 15 об. % метанола увеличение расхода топлива равно 4-5%. [c.127]

    Метанол имеет высокую детонационную стойкость, удовлетворительную испаряемость, образует минимальный нагар, а продукты его сгорания менее токсичны, чем продукты сгорания бензинов. Высокая теплота испарения позволяет снизить темпе- [c.225]

    В бензин иногда добавляют метанол (СН ОН) и этанол (С2Н5ОН). Их теплоты сгорания равны 728 кДж/моль (23 кДж/г) и 1370 кДж/моль (30 кДж/г) соответственно. Теплота сгорания бензина примерно равна теплоте сгорания октана (см. табл. 111.5). [c.212]

    Среди кислородных сое)щнений широко исследуются спирты, эфиры и их смеси. Примененив. спиртов в качестве самостоятельных топлив или компонентов бензинов известно давно. Они имеют высокую детонационную стойкость, удовлетворительную испаряемость, образуют минимальный нагар, а продукты их сгорания менее токсичны, чем продукты сгорания бензинов. Высокая теплота пспарения позволяет снизить температуру горючей смеси в такте впуска, повысить коэффициент наполнения и при малой склонности к нагарообразованию снизить требования двигателя к детонационной стойкости применяемых топлив. Основным недостатком спиртов как топлив является их низкая теплота сгорания. Кроме того, многие из них ограниченно растворимы в бензине особенно в присутствии воды. Среди спиртов с учетом сырьевых ресурсов, технологии получения и ряда технико-экономических факторов наиболее перспективен в качестве топлива для двигателей с принудительным зажиганием — метанол. Безводный метанол при обычных температурах хорошо смешивается с бензином в любых соотношениях. Но даже малейшее попадание воды вызывает расслаивание смеси. Так, смесь метанола (15%) с бензином расслаивается при О °С при содержании воды более 0,06%, а при 20 °С — более 0,18%. Введение в смесь метанола с бензином небольшого количества бензилового или изобутилового спиртов несколько увеличивает стабильность смеси, но не решает вопроса полностью. [c.170]

    Мы не намереваемся подробно обсуждать многообразие процессов, большинство из которых теперь абсолютно устарело. Особенно это касается тех процессов, которые были разработаны в период между двумя войнами для газификации угля и кокса, так как основная цель большинства из них —получение искусственного газа либо для производства аммиака или метанола, либо для производства светильного J(гopoд кoгp) газа средней теплоты сгорания, подаваемого домовладельцам или мелким предприятиям. Существует, однако, заслуживающее внимания мнение о том, что большинству из этих процессов газификации присущи общие технологические особенности, такие, как низкое или даже атмосферное рабочее давление, тенденция к образованию легко иснаряющихся жидкостей и даже твердых побочных продуктов, что в свою очередь приводило к получению газа, содержащего значительные количества примесей, таких, как сернистые соединения, окислы азота, непредельные углеводороды, иногда называемые осветителями и др. Отличительными чертами ранних схем газификации являлись также их исключительная сложность и неэффективность оборудования для переработки угля, кокса и золы. [c.152]

    Метиловый спирт (метанол)—важное соединение для получения главным образом формальдегида, а также диметилсульфата, диметилтерефталата, метилацетата, диметилформамида, антидето-пационных смесей (тетраметилсвинец), ингибиторов, антифризов, метиламина, метилового эфира акриловой кислоты, лаков, красителей и других продуктов. В чистом виде применяется в качестве растворителя и может быть использован как моторное топливо или как высокооктановая добавка к нему. Применение метанола в двигателях внутреннего сгорания решает как энергетическую, так и экологическую проблемы, так как при сгорании метанола образуются только водяной пар и СОг, тогда как при сгорании бензина— оксиды азота, СО и другие токсические соединения. [c.164]

    Одним из путей повышения эффективности производства аммиака, метанола и водорода является применение энерготехнологических схем с парогазовым циклам, в котором в качестве рабочего тела используется не только водяной пар, но и продукты сгорания топлива /16, 103, 109, 110]. Такая схема применительно к паровоздушной конверсии была рассмотрена выше (см. рис. 74). При паровой конверсии в высоконапорной камере располагаются реакционные трубы, заполненные катализатором. Это значительно усложняет конструкцию аппарата. Более сложной становится и вся схема. По-видимому, это является причиной того, что схемы с парогазовым циклом в промыоиенность не внедрены. Но энергетический к.п.д. такой схемы примерно на 10 выше /16, 10 , чем схе- [c.300]

    Рост потребности в бензинах с повышенным октановым числом сопровождается в настоящее время ужесточением требований к охране окружающей среды. Применение в качестве анти-детонационной добавки тетраэтилсвинца, получившего широкое распространение, приводит к выбросу в атмосферу токсичных веществ и отравлению катализаторов дожига выхлопных газов автомобилей. В таких условиях растет потребность в высокооктановых, особенно низкокипящих компонентах бензина. Перспективным из них следует считать трег-бутилметиловый эфир (ТБМЭ) это соединение имеет октановые числа 102 по моторному и 117 по исследовательскому методам. Характеристика ТБМЭ температура кипения 55,3 °С и застывания —108,6 °С плотность 740,4 кг/м и теплота сгорания 38,22 МДж/кг полностью смешивается со всеми углеводородами и стабилен при хранении. Получают его из метанола и изобутена по реакции  [c.118]

    Превращение биомассы в топлива, пригодные для непосредственного использования, осуществляется термохимическими или биохимическими процессами. К термохимическим процессам переработки относятся прямое сжигание, пиролиз, газификация и экстракция масел, к биохимическим — ферментация и анаэробное разложение. Перед переработкой биомасса обычно проходит стадии подготовки, включающие измельчение, сущку и др. При переработке биомассы в моторные топлива наибольший интерес представляет газификация с получением синтез-газа (преобразуемого затем в метанол или углеводороды), а также ферментация с получением этанола. Процесс получения синтез-газа во многом аналогичен газификации угля (см. раздел 3.2). При газификации древесины при 300 °С в присутствии кислорода образуется в основном диоксид углерода. При повышении температуры до 600 °С получают смесь, в которой помимо СОг присутствуют водород, оксид углерода, метан, пары спиртов, органических кислот и высших углеводородов. Выход газообразных продуктов при этом не превышает обычно 40% (масс.) на сырье. В связи с меньшими энергетической плотностью и теплотой сгорания биомассы газификация ее менее эффективна, чем газификация угля. Поэтому, несмотря на проводимые во многих странах исследовательские и конструкторские [c.121]

    При использовании спиртовых топлив снижается содержание контролируемых вредных компонентов отработавших газов автомобиля. Благодаря низким температурам горения спиртов на единицу расходуемой энергии и топлива выделяется значительно меньше, чем у бензина оксидов азота. Одновременно вследствие улучшения полноты сгорания спиртовых смесей выбросы СО и [СН] также уменьшаются. Выбросы канцерогенных ароматических углеводородов также на порядок ниже, чем при работе двигателя на бензине. Сравнительные данные по вредным выбросам при работе автомобиля Mer edes Benz на бензине и метаноле (числитель — по европейскому ездовому циклу, знаменатель — по циклу VS-2 г/цикл) [150]  [c.151]

    При использовании чистых спиртов как в карбюраторных, так и в дизельных двигателях отмечены повышенные износы деталей цилиндроноршневой группы. Увеличение износа прп работе двигателя на спиртах возможно по ряду причин, основные из которых попадание в цилиндры значительного количества неиспарившегося спирта и смыв им смазки, ухудшение смазки из-за образования на трущихся поверхностях спирто-водно-масляной эмульсии, взаимодействие спиртов с присадками масел и снижение их эффективности. Кроме того, спирты и их коррозионно-агрессивные продукты сгорания (формальдегид, ацетальдегид, муравьиная кислота) воздействуют на такие металлы, как алюминий и сплавы свинца и меди. Как показали исследования, наибольший износ двигателя наблюдается при использовании метанола. При эксплуатации двигателя на этаноле при нормальных температурах износ ниже, однако он значительно увеличивается на низкотемпературных режимах работы. [c.154]

    В нашей стране разработаны две Jv apки бензино-метанольной смеси летняя — 5% метанола и зимняя—15% метанола -1-7% стабилизатора. Летнюю смесь можно использовать наравне с бензином А-76 без конструктивных изменений топливной системы двигателей. Вследствие пониженной теплоты сгорания спиртов и их повышенпой агрессивности к металлам и резиновым техническим изделиям для использования зимней смеси необходима установка специальной топливной аппаратуры. [c.158]

    Использование природного газа вместо угля при реализации процессов газификации с получением синтез-газа позволит снизить капитальные вложения, по имеющимся оценкам, примерно на 30% за счет отказа от таких технологических операций, как помол, сушка угля и др. Тем не менее приведенные затраты на производство жидких углеводородов в этих процессах будут достаточно велики. Так, приведенные затраты на получение метанола при принятых в расчетах замыкающих затратах па природный газ составят 150—160 руб/т, бензин процесса Mobil — около 370—380 руб/т. При оценке эффективности использования метанола необходимо иметь в виду, что теплота его сгорания ниже теплоты сгорания бензина более чем в 2 раза, а энергетический к. п. д. производства составляет 54%. [c.220]

    Метанол по ряду важных характеристик превосходит лучшие сорта углеводородных тоилив. Однако он обладает и рядом недостатков высокой гидрофильностью, токсичностью, афессивностью по отношению к некоторым металлам и пластикам. Использование чистого метанола в качестве топлива для двигателей внутреннего сгорания потребует существенной реконструкции автомобилей. Исследования показали, что КПД имеющихся мета-нольных двигателей на 20% выше, чем КПД традиционных. Причины более высокого КПД и вызванного этим уменьшенного расхода топлива можно объяснить более высокой степенью сжатия (] 13), более полным сжиганием топлива, более высокой скоростью сгорания. [c.127]

    В настоящее время основные недостатки метанола в качестве компонентов для автомобильных бензинов преодолены. Вводятся эффективные стабилизаторы, металлы и резино-технические изделия, соприкасающиеся с бензометанольными смесями, не подвергаются коррозии, набуханию и разрушению. Остались такие недостатки, как низкая теплота сгорания (экономичность двигателя ухудшается на 2—7% при добавке 10% метанола) и высокая токсичность метанола. Однако чрезвычайно широкие ресурсы метанола и его участие в снижении токсичности отработавших газов позволяют считать его перспективным компонентом. [c.226]

    В США, странах Западной Европы, Японии накоплен определенный опыт по эксплуатации автомобильного парка с применением бензино-метанольных смесей с низким содержанием метанола — около 5%. Такие топлива уменьшают выбросы оксида углерода, снижают отношение воздух/топливо, повышают октановое число и позволяют вывести из состава бензина канцерогенный бензол. Эти соединения фотохимически менее активны, чем углеводороды, и, следовательно, имеют более низкую смогообразующую способность. Правда, есть и такой взгляд, что спирты могут превращаться при окислении в камерах сгорания в смогообразующие альдегиды. [c.226]

    Одна из интересных смесей, состоящая из 48% метанола и 52% третбутилового спирта, испытана в качестве кислородсодержащего компонента под названием оксинол . Исследована побочная фракция при производстве изопропилового спирта — диизопропиловый эфир (ДИПЭ). Испытания показали, что наличие в бензине 2% кислорода в виде оксинола или МТБЭ практически не изменяло мощности и экономичности двигателя. При содержании 2,7% кислорода в виде технического ДИПЭ увеличение массового расхода топлива из-за снижения теплоты сгорания уже не компенсировалось улучшением экономичности из-за обеднения смеси и отмечалось некоторое увеличение удельного расхода топлива. Во всех случаях при переходе с товарного бензина на опытный снижалось содержание СО в отработавших газах (ОГ) от 30 до более 50%. В значительно меньшей степени введение в бензин оксигенатов влияет на выброс углеводородов и окислов азота. В состав так называемого модифицированного бензина, перспективного с экологической точки зрения, обязательно вводится от 2,0 до 2,7% кислородсодержащих соединений (см. ниже). [c.231]

    Основным модифицирующим фактором в составе бензинов с улучшенными экологическими свойствами является введение кислородсодержащих соединений (оксигенатов). Добавка таких соединений позволяет снизить выбросы оксида углерода в ОГ и повысить детонационную стойкость бензинов. Оксигенаты фотохимически менее активны, чем углеводороды, и, следовательно, имеют более низкую смогообразующую способность. Наиболее дешевые и доступные оксигенаты — метанол и этанол, но они гигроскопичны и в процессах сгорания образуют смогообразующие альдегиды. Считают, что наиболее подходящими оксигенатами для бензинов являются эфиры и в первую очередь МТБЭ (метилтретбутиловый эфир). Он содержит в составе 18% кислорода, и добавлять его можно в количестве до 15%, что обеспечивает содержание кислорода в таком бензине 2,7%. [c.346]

    Это способствует также увеличению эффективного К.П.Д. двигателя. Кроме того, повьппениюг1е при работе на топливах, содержащих кислородсодержащие соединения, способствует меньший теплоотвод в цилиндрах, более ни 5кая температура отработавших газов и полное сгорание топливной смеси. По данным, полученным на одноцилиндровой установке "Рикардо" для топливной смеси, содержащей 20% метанола, т е повышается на 3% [ 16]. [c.63]


Смотреть страницы где упоминается термин Метанол сгорания: [c.282]    [c.212]    [c.171]    [c.39]    [c.225]    [c.278]    [c.9]    [c.232]    [c.233]    [c.93]    [c.340]    [c.4]    [c.8]    [c.43]   
Методы получения и некоторые простые реакции присоединения альдегидов и кетонов Ч.1 (0) -- [ c.98 ]




ПОИСК







© 2025 chem21.info Реклама на сайте