Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Светильный газ, производств

    Все рассмотренные выше горелки могут работать на всех известных горючих газах (например, светильный, природный, печной), что очень важно в химической промышленности при наличии в отдельных производствах печного газа (как отхода производства). [c.367]

    Термический пиролиз углеводородов был первым промышленным процессом деструктивной переработки нефти. Сначала пиролиз служил для получения светильного газа. В период первой мировой войны во многих странах обратили внимание на пиролиз керосина, как на дополнительный источник производства толуола. Получение ароматических углеводородов, главным образом толуола, посредством пиролиза осуществлялось вплоть до 40-х годов и постепенно с развитием процессов риформинга утратило свое значение. В настоящее время пиролиз газообразного и жидкого углеводородного сырья является основным крупномасштабным способом производства низших олефинов и вновь получает распространение как серьезный источник ароматических углеводородов. [c.181]


    Крупных производствах. Он является составной частью светильного, генераторного, колошникового, водяного и коксового газов. [c.563]

    Органическая химия достигла огромных успехов в изучении состава и в переработке каменного угля, нефти и природного газа таким образом, она тесно связана с угольной, нефтяной и газовой отраслями промышленности, обеспечивающими народное хозяйство, с одной стороны, различными видами топлива, с другой — сырьем для различных производств. Так, каменный уголь используют не только как топливо путем переработки из него добывают необходимый для металлургии кокс, а также светильный газ и каменноугольный деготь последние, в свою очередь, служат источником для получения многочисленных органических соединений, необходимых для синтеза высокомолекулярных соединений, красителей, лекарственных и взрывчатых веществ и т. п. Из нефти путем ее перегонки добывают различные виды горючего, смазочные материалы и другие ценные продукты. Природные газы, особенно попутный нефтяной газ, также представляют собой ценное химическое сырье и топливо, используемое как в промышленности, так и в быту. [c.15]

    Получение искусственного светильного газа ведут путем сильного нагревания без доступа воздуха ( сухой перегонки ) каменного угля. В состав его входит обычно около 50% Нг, 30% СН4, 4% других углеводородов, 9% СО, 2% СО2 и 5% N2. Ввиду значительного содержания СО светильный газ весьма ядовит. При сжигании газа указанного состава выделяется 23 МДж/м Важными побочными продуктами светильно-газового производства являются каменноугольная смола (используемая для получения из нее ряда органических веществ), аммиак и кокс. [c.304]

    П. И. Шестаков. Краткий курс лекций по производству светильных газов и технологии нефти, жиров и масел. Л., 1928, стр. 252. [c.392]

    Небольшие количества аммиака образуются как побочный продукт при производстве кокса и светильного газа путем сухой перегонки угля, -а также в цианамидном производстве. При получении цианамида смесь извести и кокса нагревают в электрической печи, в результате чего образуется ацетилид (карбид) кальция СаСг [c.197]

    В годы, предшествующие раз-витию промышленности природных газов, широкое применение находил светильный или городской газ, получаемый в результате сухой перегонки (без доступа воздуха) твердого топлива, в частности каменного угля с высоким содержанием летучих или горючих сланцев. Производство таких газов было сосредоточено на специальных газовых заводах. Область применения — в основном бытовые нужды газовые плиты и водонагреватели. [c.17]


    Количество а ота в каменном угле изменчиво. Различного происхождения угли содержат 1—1,6% азота. При сухой перегонке угля (в производствах кокса и светильного газа) часть азота, не более 15--20 проц. переходит в аммиак (соединение азота с водородом), некоторая часть в цианистые соединения, а остальное остается в коксе и уходит из печи в виде свободного газообразного азота. [c.20]

    В начале XIX в. термическое разложение угля стали использовать для производства светильного газа. [c.119]

    Газ вырабатывался из масел примитивным способом и в очень ограниченном количестве. Начало промышленного производства светильного газа в Петербурге относится к 1835 г., когда Общество освещения газом Санкт-Петербурга основало первый газовый завод. Завод работал на каменном угле, доставляемом из Англии, производственная мощность его вначале составляла всего 4,5 млн. м3 газа в год. Этот период, очевидно, и следует считать началом развития газовой промышленности в России. [c.9]

    Активный уголь получают из органических материалов (древесины, кости, сахара, крови, ореховой скорлупы) путем пропитывания раствором хлорида цинка (И) или карбоната калия и последующего нагревания при недостатке воздуха. Содержит огромное количество пор и поэтому обладает очень большой поверхностью (1 г угля имеет поверхность 800 м=), вследствие чего обладает очень высокой способностью адсорбировать многие газы и растворенные вещества. Применяют для очистки, разделения и извлечения различных веществ, например для извлечения бензола из светильного газа, ксилола из отходов текстильных печатных паст, дисульфида углерода из отходов производства вискозного волокна, растворителей из отходов лакокрасочной промышленности, для обесцвечивания паточного сиропа, для очистки этанола от [c.314]

    Применение. В производстве рентгеновских трубок, неоновых светильных трубок и люминофоров в ядерной технике в [c.91]

    Производство светильного, водяного и генераторного газов при производительности более 50 ООО ж /ч. [c.28]

    Термические реакции углеводородов подвергались в прошлом широкому изучению с точки зрения их значения для производства светильного, нефтяного и карбюрированного водяного газов. В настоящее же время интерес к этим процессам развивается по дв /м основным направлениям, а именно с точки зрения получения бензина и с точки зрения использования их для химических синтезов. Громадный рост различных видов промышленного крекинг-процесса, при которых из высококипящих нефтяных фракций образуются значительные коли чества низших углеводородов, позволил увеличить мировое производство бензина до такой степени, что оно в состоянии отвечать все растущим запросам на этот продукт. Побочные продукты крекинг-процесса, в частности крекинг-газы, приобретают все большее значение в качестве сырья для химических синтезов эта возможность открывает большие перспективы для процессов термического разложения. Новейшие изыскания показали всю гибкость процесса пиролиза, поддающегося регулировке и позволяющего получать различные соединения, находя- [c.50]

    Кокс — это почти чистый углерод. Его используют в металлургии как восстановитель. Светильный газ состоит преимущественно из водорода и метана с примесью ароматических углеводородов — бензола и толуола. Надсмольная вода содержит аммиак. Каменноугольный деготь представляет собой смесь ароматических углеводородов и их производных и с химической точки зрения является самым важным продуктом коксохимического производства. Количество его невелико — около 3% от веса каменного угля. Для повышения выхода дегтя термическую переработку угля проводят при более низких температурах, около 700°С. В этом случае получают кокса меньше и худшего качества (так называемый полукокс), но зато образуется больше смолы — первичного дегтя. Она отличается от дегтя, полученного при коксовании, большим содержанием алициклических и предельных углеводородов и различных производных ароматических углеводородов фенолов, азотсодержащих веществ и т. д. Если первичный деготь нагреть до температуры коксования, то получается обычная каменноугольная смола. [c.81]

    Разделение и рекуперация газов. В качестве примеров можно назвать разделение редких газов, извлечение газолина из природного газа, рекуперацию ацетона, спирта и бутанола из светильного газа, рекуперацию ацетона, этилового и бутилового спиртов из отходящих, газов бродильных чанов, рекуперацию паров летучих растворителей при производстве искусственного шелка, целлулоида, резины. [c.16]

    Впервые промышленная реализация газификации твердых топлив была осущес — твлена в 1835 г, в Великобритании, с целью получения, вначале так называемого "светильного газа , затем энергетического топлива для тепловых и электростанций, а также технологических газов для производства водорода, аммиака, метанола, альдегидов и спиртов посредством оксосинтеза и синтеза жидких углеводородов по Фишеру и Троишу, К середине XX в. газогенераторный процесс получил широкое развитие в бол1.шинстве промышленно развитых стран мира. [c.171]


    Вильямс Мердок открыл их уже в 1792 г. и применил для совершенно других целей так, он думал использовать крэкирующиеся углеводороды для производства светильного газа. Впоследствии производство газа пз масел играло важную роль в газовой технике. В 1805 г. Анри также указывал на эш явления термического разложения. [c.232]

    Мы не намереваемся подробно обсуждать многообразие процессов, большинство из которых теперь абсолютно устарело. Особенно это касается тех процессов, которые были разработаны в период между двумя войнами для газификации угля и кокса, так как основная цель большинства из них —получение искусственного газа либо для производства аммиака или метанола, либо для производства светильного J(гopoд кoгp) газа средней теплоты сгорания, подаваемого домовладельцам или мелким предприятиям. Существует, однако, заслуживающее внимания мнение о том, что большинству из этих процессов газификации присущи общие технологические особенности, такие, как низкое или даже атмосферное рабочее давление, тенденция к образованию легко иснаряющихся жидкостей и даже твердых побочных продуктов, что в свою очередь приводило к получению газа, содержащего значительные количества примесей, таких, как сернистые соединения, окислы азота, непредельные углеводороды, иногда называемые осветителями и др. Отличительными чертами ранних схем газификации являлись также их исключительная сложность и неэффективность оборудования для переработки угля, кокса и золы. [c.152]

    Большинство существующих процессов, использующих в качестве сырья каменные или бурые угли и позволяющих получать жидкие топлива, синтез-газ, светильный газ средней теплоты сгорания, а позднее и ЗПГ, были разработаны в ФРГ в период до и во время Второй мировой войны для того, что бы не зависеть от импорта нефтяного топлива. Не все процессы нашли применение для производства ЗПГ лишь технологические схемы, базирующиеся на методах Лурги и Копперс — Тотцека , оказались весьма перспективными [6]. [c.155]

    СО обладает сильными восстановительными свойствами, поэтому его используют для восстановления металлов из руд (оксидов). С некоторыми мета.ллами СО образует карбонилы, применяемые для получения чистых металлов. При взаимодействии СО с хлором образуется очень ядовитый газ фосген (см. Фосген). СО является одним из исходных компо ненгов современного промышленного ор ганического синтеза, входит в состав синтез-газа, имеет большое значение как горючий газ (генераторный, светильный), как сырье для получения синтетического жидкого топлива применение СО ле жит в основе многотоннажного производства метилового спирта и многих других продуктов. В производственных помещениях допускается концентрация СО не [c.256]

    Г Н2, 30 — СН4, 4 — других углеводородов, 9 — СО, 2 — СО2 и 4—5% N2. Ввиду значительного содержания окиси углерода светильный газ весьма ядовит. При сжигании газа указанного -1560Т состава выделяется 5500 ккал/м . Из тонны каменного угля получается приблизительно 300 м светильного газа, 50 л смолы и 3 кг аммиака. Побочным продуктом газификации угля яв--Ь20°С ляется также кокс. В связи с расширением добычи природного jj--350° горючего газа светильногазовое производство теряет свое прежнее значение. Однако в будущем оно, вероятно, вновь возрастет. [c.576]

    Метан (СН4) представляет собой бесцветный неядовитый газ без запаха и вкуса главная составная часть природного газа (до 99%). Используется как топливо (разд. 8.2) и как химическое сырье [в особенности для производства синтез-газа или светильного газа (разд. 8.2), а также водорода, ацетилена, ци-ановодорода, сажи и хлорпроизводных метана]. Смесь метана с воздухом очень взрывоопасна (угроза взрыва в шахтах). Метан образуется при разложении целлюлозы (так называемый болотный газ) и различных биологических остатков (биогаз). Он входит в состав атмосферы некоторых внешних планет Солнечной системы и, по-видимому, существует в твердом состоянии на очень холодных небесных телах (метановые льдины в море жидкого азота). [c.249]

    Производство светильного, водяного и генераторного газов при произ- подительности более 50 000 м 1ч. [c.233]

    В наилучших условиях, требующихся для производства светильного газа высокой теплотворной способности, нз самых лучших образцов каменного угля получается мягкий кокс невысокого качества. В условиях же, соответствующих образованию кокса, достаточно твердого для использования его при восстановлении окиси железа, светильный газ получается более низкого качества. В экономическом отношении высококачественный кокс выгоднее всего производить в коксовых печах с улавливанием побочных продуктов устройство печей позволяет получать каменноугольную смолу, аммиак и светильный газ, причем часть газа испол1ззуют как топливо для тех же печей, а остаток газа смешивают с природным или водяным газом и направляют в городской газопровод. Очищенный светильный газ, получающийся приблизительно, в количестве 0,317 на т каменного угля, состоит главным образом из водорода (52 объемн. %) и метана (32%) с небольшой примесью окиси углерода (4—9%), двуокиси углерода (2%), азота (4—5%), а также этилена и других олефинов (3—4%). Средняя теплотворная способность светильного газа 143,6 ккал/м . В процессе очистки гаэ пропускают через скрубберы для улавливания смолы и аммиака и через поглотители для выделения легкого масла, которое получается в количестве, достигающем 14,5 л на 1 г каменного угля, и содержит 60% бензола, 15% толуола, ксилолы и нафталин. При перегонке каменноугольной смолы получают дополнительно еще небольшое количество сравнительно легкого масла, но в современных условиях ОольШ  [c.152]

    Кованые железные и литые чугунные трубы, по1-видимому, уже в конце средних веков покрывали расплавленным пеком или древесным дегтем. В 1827 г. сообщалось, что трубы уже давно защищают каменноугольным дегтем [10]. В Ганновере около 1847 г. чугунные трубы для газо- и водопроводов перед прокладкой покрывали дегтем. В Германии пропитка деревянных крыш дегтем была известна уже до 1770 г. Промышленное производство каменноугольного дегтя было впервые начато в Англии в период 1792—1802 гг. деготь получали как побочный продукт при производстве светильного газа. Уильям Мёрдок соорудил в Сохо первую установку по производству светильного газа и устроил на фабрике Бултона и Уатта торжественную иллюминацию по поводу заключения Амьенского мира в 1802 г. [И]. [c.25]

    Они сопровождают бензол и его замещенные в продуктах пере-гопки каменноугольной смолы. Открытие тиофена в бензольной фракции каменноугольной смолы связано с одним из классических анекдотов органической химии. В прежние времена для характеристики химических соединений широко применялись цветные реакции. Было, например, известно, что при нагревании бензола с изатином и концентрированной серной кислотой появлялась синяя окраска. В 1882 г. В. Мейер читал перед студентами последнего курса лекцию, сопровождавшуюся демонстрацией опытов. К восторгу всех присутствующих, за исключением самого профессора и тем более ассистента, ответственного за подготовку и демонстрацию опытов, опыт не удался и цветная реакция не получилась. При тщательном анализе условий эксперимента выяснилось, что у ассистента кончились запасы продажного бензола и он спешно приготовил бензол для лекционного опыта путем декарбоксилирования бензойной кислоты. Сразу стало ясно, что цветная реакция характерна не для самого бензола, а для содержащейся в нем примеси. Эта примесь оказалась ранее не известным циклическим соединением, названным тиофеном. Происхождение этого слова связано с греческим названием серы тийон и другим греческим словом фено , означающим светящийся и послужившим ранее корнем слова фенол (фенол был получен при производстве светильного газа из (каменноугольной смолы в 1качестве побочного (продукта). [c.245]

    Наиболее старым и широко распространенным видом отопительного газа является светильный газ. В тех странах, где имеются источники природного газа, светильный газ заменяется более дешевым и имеющим большую теплотворную способность природным газом, который состоит в основном из метана. На производстве лаборатории имеют подвод коксового, водяного или генераторного газов. При отсутствии газопровода в качестве отопительного газа можно использовать сжсь газовых нефтяных фракций (пропан, бутан). Эти газы нагнетают в баллоны, где они сжижаются в таком виде они удобны для перевозки. Для указанных газов требуются, однако, горелки специальной конструкции. [c.66]

    Опыт противогазовой техники был использован для разработки разнообразных рекуперационных установок со стационарным слоем активного угля. Интенсивная работа в зтом направлении проводилась немецкими инженерами. Улавливание бензола из светильного и коксового газов, растворителей из выбросных газов резиновой промышленности, бензина из природных газов, эфира и спирта в производстве порошков — вот далеко не полный список основных направлений применения адсорбционного метода для рекуперации продуктов из газовой фазы в период с 1920 по 1930 гг. Стадию десорбции на этих установках во всех случаях осуш ествляли водяным паром. [c.18]

    В промышленности натрия тиосульфат получают из отходов газового производства. Этот метод несмотря на многостадий-ность экономически выгоден, так как сырьем являются отходы газового производства и, в частности, светильный газ, образующийся при коксовании угля. [c.89]

    В промьииленности метан находит разнообразное примените. В составе природного, светильного, коксового, городского и биогазов он используется для получения тепла. При частичном окислении метана (для этого используют охлаждение пламеш метана) пли при термическом разложении получают сажу, которая используется помимо всего прочего в качестве паполпителя при производстве резины  [c.203]

    Простейшие тиофены [1] представляют собой устойчивые жидкости, по температуре кипения и даже по запаху сильно напоминающие бензол. Они сопровождают бензол и его производные в продуктах перегонки каменноугольной смолы. Открытие тиофена в бензольной фракции каменноугольной смолы связано с одним из классических курьезов в органической химии. В прежние времена для характеристики химических соединений широко применялись цветные реакции. Было, например, известно, что при нагревании бензола с изатином и концентрированной серной кислотой появляется синяя окраска (разд. 14.1.1.7). В 1882 г. В.Мейер читал студентам последнего курса лекцию, сопровождающуюся демонстрацией опытов. К восторгу всех присутствующих, за исключением самого профессора и особенно его ассистента, опыт не удался. При расследовании этого инцидента выяснилось, что у ассистента закончился запас коммерческого бензола и он приготовил бензол путем декарбоксилирования бензойной кислоты. Стало ясно, что цветная реакция характерна не для самого бензола, а для содержащейся в коммерческом бензоле примеси. При дальнейших исследованиях Мейеру удалось выделить эту примесь и определить как неизвестную ранее циклическую систему, которой он дал имя тиофен от греческих слов гкеюп (сера) и ркато (светящийся). Впервые корень этого слова был использован для названия фенола, поскольку он был побочным продуктом при производстве светильного газа из каменноугольной смолы. [c.352]

    В настоящее время железистосинеродистый калнй получается в качестве побочного продукта при производстве светильного газа в процессе tr-o 1ОЧИСТКИ образуются берлинская лазурь и роданистый аммоний. [c.370]

    Если высушенную древесину поместить в закрытом стальном сосуде в печь с температурой 700—800°, то начнется бурное разложение древесины с выделением большого количества газа, отличающегося высокой теплотворной способностью (около 4000—4500 кал1м ). По калорийности такой газ удовлетворяет требованиям газа для бытовых целей. В XIX веке, когда не было электричества, такой газ из древесины и из каменного угля применяли для освеш,ения. Отсюда до нашего времени сохранилось название газа — светильный. В настоящее время этот газ чаще называется искусственным бытовым в отличие от естественного природного газа. В СССР не существует высокотемпературного пиролиза, но организация его при использовании пирогенетическим путем древесных отходов была бы целесообразна при наличии потребности в бытовом газе в местностях, богатых древесиной, но далеких от мест добычи ископаемых видов топлива, природного и жидкого газа. Такой газ ценится так же как силовой газ для двигателей внутреннего сгорания. Пиролиз при высокой температуре легко сочетать с производством активного угля, который должен найти широкое применение в сельском хозяйстве. [c.65]

    Полукоксование использовалось еще в ХУИ1 в., т. е. раньше процессов производства светильного газа и коксования. Полукоксование проводилось для получения осветительных масел и бездымного топлива для домашних очагов. В настоящее время полукоксование сохраняет значение в странах, богатых углями с большим содержанием летучих, но бедных нефтью (например, [c.101]

    Третьим важным источником исходных продуктов для получения смол является синтез под высоким давлением аммиака и метилового спирта из водорода, который в первом случае реагирует с атмосферным азотом, а во втором — с окисью углерода аммиак применяется для получения, путем реакции с двуокисью углерода, мочевины, а метиловый спирт—для окисления его в формальдегид. Еще почти неиспользованными, но многообещающими в этой области материалами являются побочные продукты, получаемые при крекинге нефти. При соответствующем подборе сырья и условий крекинга можно получить хорошие выходы таких важных продуктов, как этилен, изобутилен, бутадиен и даже ацетилен. Хотя эти последние получаются в виде компонентов сложных систем и выделение их из смесей и очистка сопряжены сисп гхьзо-ванием сложной аппаратуры, но то обстоятельство, что эти ценные продукты пиролиза могут сильно удешевить производство смол, делает этот синтез весьма многообещающим. И действительно, уже-достигнуты большие успехи в области пиролиза нефти, при произ-. водстве светильного газа, в направлении получения значительных количеств таких ценных ненасыщенных углеводородов, как стирол. [c.479]

    В 1735 г. инженером-металлургом Кольбрукделем Авроа-мом Дерби была решена проблема замены в доменном производстве древесного угля каменноугольным коксом. Этот метод с 1775 г. начал широко внедряться в промышленности при выплавке чугуна. Получаемый при производстве кокса светильный газ использовали для освещения и бытовых нужд, а из каменноугольной смолы стали выделять бензол, ксилолы, фенолы, пек, антрацен и другие ценные химические продукты. [c.7]

    Процессы термической переработки углей применялись уже в конце ХУП1 —начале XIX века (производство каменноугольного кокса, получение облагороженных углей для бездымного сжигания, производство светильного газа н др.). [c.137]

    УГЛЕРОДА ОКСИД (угарный газ) СО, i ., —205,02 С, (юю —191,5 "С раств. в сп., бензоле, плохо — в воде КПВ 12,5--74%. Реаг. при высоких т-рах с СЬ, S, нек-рыми металлами и щелочами. Получ. газификацией тз. топлив (компонент генумторных, водяного, светильного газов) р-ция H с HiO в лаб.— взаимод. НСООН с HjS04 пра 100 "С. Примен. высококалорийное топливо в синтезе, ыапр., спиртов, углеводородов, альдегидов, карбоновых к-т для восст. нек-рых оксидов металлов и получ. карбонилов металлов. ПДК в производств, помещениях длительно 0,03 мг/л, в течение 15—20 мин — 0,2 мг/л. [c.603]

    Основные научные работы посвящены исследованию газов. Разработал методы анализа смесей различных газов, полученных из угля или других продуктов органического происхождения (эти работы были обусловлены развитием производства светильного газа). Открыл (1808) зависимость растворимости газов в воде от температуры (закон Генри). Выдвинул теорию, инфекционных заболеваний, согласно которой болезни распространяются термически нестойкими химическими соединениями. Во время эпидемии холеры предложил (1831) дезии(1ищировать одежду нагреванием. Автор наиболее популярного в Англии в течение 30 лет учебника по химии Элементы (1801), выдержавше- [c.136]

    Пропан, вследствие легкой испаряе1МОсти при низких температурах, находит специальное применение для домашних нужд, а применение продажного бутана в качестве карбюрирующего агента при производстве светильного газа является одним из значительных достижений газовой промышленности Было предложено применять жидкие нефтяные газы для экстракции канифоли и смол , а также для очистки масел и асфальтов . Газы, в частности пропан, могут найти применение также в холодильном деле . Пентан предлагается применять для предварительной обработки бумаги, перед пропитыванием ее вязкими веществами , при производстве изоляционных материалов. Испытание метана в качестве топлива для моторных экипажей также дало благоприятные результаты Wulff предложил взрывчатую смесь, состоящую из окислителя, сжиженного летучегО углеводорода и адсорбента, которая однакО легко теряет свои взрывчатые свойства вспедствие испарения углеводорода. [c.25]

    To her исследовал термическое разложение октана, декана и различны) парафиновых дестиллатов с точки зрения оценки пригодности этих веществ дл5 производства светильного газа (из нефти). Автор пришел к выводу, что окта( и декан при низких т емпературах разлагаются на этилен и высшие олефииы метан и водород при более же высоких температурах не наблюдается образо-аания высших олефинов, и газообразные продукты реакции состоят лишь и этилена,. метана и водорода. [c.74]

    Одним из наиболее крупных источников метилового спирта является сухая перегонка дерева. С падением спроса на древесный уголь и в связи с синтетиче-ски.м производством метилового спирта, в частности в Германии, этот источник перестал быть основным. Тем не менее развитие производства газообразных углеводородов, например производство светильного газа из крекинг-газа, привело к исследованию их оригодности в качестве сырья для получения формальдегида путем частичного окисления. В этой главе обсуждается только частичное окисление газообразных углеводородов жирного ряда метана и этана окисление нена- сыщенных углвБОдородных газов рассматривается в гл. 39. [c.931]

    Один из первых способов производства формальдегида и метилового спирта окислением метана бьил разработан Glo k oM В этом процессе метан и кислород пропускают над нагретой смесью металлической меди и пемзы или асбеста получающиеся продукты конденсируют. Можно также применять смесь газа, получающегося при коксове.нии угля, или светильного газа, с воздухом. [c.932]


Смотреть страницы где упоминается термин Светильный газ, производств: [c.444]    [c.248]    [c.151]    [c.175]    [c.646]   
Справочник по основной химической промышленности Издание 2 Часть1 (0) -- [ c.4 , c.7 ]




ПОИСК





Смотрите так же термины и статьи:

Залогин Производство светильного газа

Понятие о производстве светильного или городского (бытового) газа

Производство аммиака т светильного газа

Производство светильного (бытового) газа

Светильный газ

Схема производства светильного

Устройство газогенераторных станций. Пуск газогенератора. Эксплоатация газогенератора. Остановка газогенератора. Общие вопросы эгсплоатации газогенераторных станций Производство светильного(бытового) газа



© 2025 chem21.info Реклама на сайте