Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изменения механические

Рис. 89. Изменение механических свойств и скорости растрескивания над 25%-ным аммиаком в зависимости от температуры отжига для латуни марки ЛбВ Рис. 89. <a href="/info/927005">Изменение механических свойств</a> и скорости растрескивания над 25%-ным аммиаком в зависимости от <a href="/info/500285">температуры отжига</a> для латуни марки ЛбВ

    На рис. 4.1 приведены кривые изменения механических свойств горячекатаной углеродистой стали обыкновенного качества группы А в зависимости от температуры испытания. Предел прочности при повышении температуры зна-> ительно снижается, поэтому для нагруженных деталей, оборудования и аппаратуры такую сталь применяют с ограничением по температуре. Для руководства по определению температурных границ применения стали СтЗ по допускаемым напряжениям можно пользоваться графиком рис. 4.2. [c.178]

    Скорость химической коррозии металлов определяют количественно, наблюдая во времени т какую-либо подходящую для этих целей величину у. глубину проникновения коррозионного разрушения в металл П, толщину образующейся на металле пленки продуктов коррозии к, изменение массы металла т или объема реагирующего с металлом газа V, отнесенные к единице поверхности металла, изменение механических свойств металла (например, предела прочности а ) или его электрического сопротивления Я, выраженные в процентах, и т. д. Истинная (или [c.40]

Рис. 1.5. Изменение механических свойств металла при различных видах коррозионного разрушения /—общая коррозия 2 —язвенная коррозия 3 — межкристаллическая коррозия Рис. 1.5. <a href="/info/927005">Изменение механических свойств</a> металла при различных <a href="/info/1464866">видах коррозионного разрушения</a> /—<a href="/info/71860">общая коррозия</a> 2 —<a href="/info/69769">язвенная коррозия</a> 3 — межкристаллическая коррозия
    После нагружения до производится выкатка, т. е. вращение при постоянном радиусе изгиба. Сравнение механических свойств материала после вращения обечайки с различным числом оборотов с исходными показывает, что резкое изменение и Од происходит после гибки листа в обечайки. После сварки продольного шва и последующей правки изменений механических свойств в зависимости от количества оборотов не наблюдается, т. е. при степенях деформации материала, наблюдающихся при правке (до 2,5%), количество оборотов при выкатке заметного влияния на механические свойства материала не оказывает. В связи с этим 1—1,5 оборотов вполне достаточно для получения необходимой точности. [c.54]

    Большая часть аппаратов иа нефтеперерабатывающих заводах работает при повышенных температурах. Изменение механических свойств сталей при повышенных температурах следует учитывать при выборе допускаемых напряжений. Так, при повышении температуры предел текучести сталей падает, а поскольку рабочие напряжения не должны превышать предел текучести, п их выбирают с определенным запасом, то при повышении температуры допускаемые наиряжения уменьшают. [c.5]


    Добавка к Ре, Со, N1 даже в небольших количествах других элементов приводит к значительному изменению механических и физико-химических свойств этих металлов. Причем на свойства сплавов оказывает сильное влияние термическая и механическая обработка. Кратко рассмотрим эти закономерности на примере наиболее важной системы железо — углерод. [c.557]

    Изменение механических свойств различных углеродистых сталей с содержанием углерода до 0,4% при повышенных температурах носит примерно одинаковый характер и может быть представлено в относительных единицах (табл. 1). [c.6]

    Под условным понимают избыточное рабочее давление ири температуре 20° С. Стандартные сосуды и аппараты рассчитывают па прочность при температуре 100° С, чтобы рабочее давление в интервале температур от 20 до 100° С не снижалось. При новы-шении температуры выше 100° С рабочее давление для данного стандартного аппарата или его сборочных единиц снижают в соответствии с изменением механических свойств используемого материала. Пределы ирименения стандартного оборудования н его деталей по давлению в зависимости от температуры приведены в стандартах. [c.35]

    Материалы для изготовления корпуса и узлов реактора выбираются исходя из условий эксплуатации установки, характеристик используемого сырья, а также возможного изменения механических свойств этих материалов при проведении процесса под воздействием температуры, давления и среды. Примерные химический состав и механические свойства наиболее распространенных сталей, применяемых при изготовлении реакторов каталитического риформинга, приведены в табл. 11. Состав и механические характеристики используемых материалов должны быть подтверждены сертификатами предприятий-из-готовителей. [c.43]

Таблица 54. Изменение механических показателей нетканых фильтрующих материалов после контакта с маслом АС-8, нагретым до 55 °С Таблица 54. <a href="/info/532834">Изменение механических</a> показателей <a href="/info/1538666">нетканых фильтрующих</a> материалов после контакта с маслом АС-8, нагретым до 55 °С
    Определение изменения механических свойств образцов после экспозиции в сре,цах [c.36]

    Оборудование предприятий нефтегазопереработки работает в условиях действия механических напряжений, высоких температур и коррозионно-активных рабочих сред, инициирующих возникновение и накопление повреждений, приводящих со временем к нарушению его работоспособности. Состояние оборудования в течение жизненного цикла может быть интерпретировано как кинетический процесс со стадийным накоплением повреждений, сопровождаемый изменением механических свойств, и оценено с помощью безразмерного параметра П, который равен нулю в начальном состоянии и единице в предельном. В общем случае в число переменных кинетического уравнения процесса накопления повреждений и разрушения входят компоненты тензора напряжений Т Г, деформации ТЦ и ее скорости тJ, время (, температура Т и др. [c.303]

    Введение этого показателя позволило довольно четко проследить зависимость механических свойств от природы исходного сырья и выявить периодичность в изменении механических свойств кокса при термической обработке его. В качестве показателя, характеризующего природные свойства кокса, приняли величину его истинной плотности, определяемую после прокалки при стандартных условиях (1300°С, 5 ч). [c.183]

    Из практики известно, что пластовая минерализованная вода образует с нефтью более устойчивые и быстро стареющие эмульсии, чем пресная вода. Об изменении механической прочности образующегося межфазно-го слоя можно судить по максимальному напряжению сдвига на границе [c.22]

Рис. 4. Изменение механической прочности слоя на границе арланской нефти и пластовой воды. (Обозначения кривых те же, что и на рис. 3.) Рис. 4. Изменение <a href="/info/1652399">механической прочности слоя</a> на границе <a href="/info/1462685">арланской нефти</a> и <a href="/info/537563">пластовой воды</a>. (Обозначения кривых те же, что и на рис. 3.)
    Для нескольких нефтей, образующих устойчивые эмульсии, было исследовано изменение механической прочности межфазных слоев на [c.22]

    Оборудование нефтехимических заводов часто работает при повышенных давлениях, подвергаясь воздействию как высоких, так и низких температур. Последнее в сильной степени оказывает влияние на изменение механических свойств стали. [c.178]

    В результате растворения водорода в стали могут развиться два вида изменений механических свойств — обратимые и необратимые. [c.259]


    Сравнительно мягкие условия высокотемпературного наводороживания- не вызывают необратимых изменений механических свойств (табл. 4.60), и при последующем отпуске или медленном охлаждении насыщенных водородом о< разцов происходит полное восстановление свойств. В том же случае, когда прей исходит обезуглероживание стали, даже незначительная концентрация водорода [c.260]

Рис. 29. Изменение механической прочности в объеме коксового пирога при температуре на входе в камеру 495- Рис. 29. <a href="/info/532834">Изменение механической</a> прочности в объеме <a href="/info/308699">коксового пирога</a> при температуре на входе в камеру 495-
    Трубопроводы подвергают ремонту, если толщина стенки трубы достигла предельной отбраковочной величины если при обстукивании молотком стенок трубы остаются вмятины если имеются пропуски через контрольные отверстия и обнаружены дефекты в сварных соединениях или изменения механических свойств трубы. После ремонта трубопровода оформляется удостоверение о качестве ремонта. [c.399]

    Ингибиторами коррозии называют вещества, введение которых в небольшом количестве в агрессивную среду тормозит процесс коррозионного разрушения и изменения механических свойств металлов и сплавов. [c.88]

    Значительное влияние растворы с различными pH оказывают на изменение механических свойств сплавов п коррозионно-усталостную выносливость. [c.101]

    Экспериментальные данные свидетельствуют о том, что независимо от марки материала (сталей, сплавов титана) при N л5 3...4-10 значение деформаций при разрушении одинаково. Формулы (298) и (299) и кривые допускаемых напряжений следует использовать для оценки прочности элементов аппаратов при раздельном или совместном действии циклических, механических и термических напряжений при условии, что рабочая температура не вызывает изменения механических свойств материала или ползучесть. [c.216]

    Практика бурения показывает, что при применении для продувки скважины газообразного агента ствол скважины в большинстве случаев сохраняет размеры, близкие к номинальным. Применение глинистых дисперсий в качестве промывочной жидкости содерн<ит ряд противоречий. С одной стороны, создавая противодавление на глины, они как бы способствуют устойчивости стенок скважины. С другой — перепад давлений в системе скважина — пласт вызывает фильтрацию и тем самым способствует течению физико-химических процессов, которые в различной мере, в зависимости от химического состава фильтрата, вызывают изменение механической прочности глинистых пород. При этом плотность глинистой корки, если она будет образовываться на стенках скважины, сложенных коллоидальными глинистыми породами, едва ли будет играть важную роль, поскольку сами глинистые породы сильно уплотнены и в приствольной зоне могут иметь значительно меньшую проницаемость, чем корка. [c.94]

    Большой практический интерес представляет оценка динамики изменения свойств металла в процессе эксплуатации оборудования. Кроме механических и коррозионных факторов повреждаемости в процессе эксплу атации конструкций возможны проявления динамического старения (при циклических нагрузках), термофлуктуационных процессов накопления повреждений и др. В связи с этим в лаборатории физико-механических исследований металлов ВНИИСПТнефть проведены механические испытания металла труб нефтепроводов после различного срока эксплуатации. Независимо от срока эксплуатации нефтепроводов основные механические характеристики не ниже таковых, регламентированных в соответствующих нормативных материалах [219]. При испытаниях обнаруживаются эффекты деформационного старения, в частности, для многих сталей появляется площадка текучести, несколько снижается коэффициент деформационного упрочнения. Однако, эти изменения незначительны. По данным работы [185] в процессе изготовления труб пластические деформации в металле могут достигать порядка 5% и более. Причем, пластические деформации распределяются по периметру трубы крайне неравномерно. Следовательно, при оценке свойств трубных сталей, кроме флуктуации состава и структуры, следует учитывать изменение механических свойств за счет различия степени проявления эффекта деформационного старения. В целом, разброс механических свойств эксплуатированных нефтепроводов не выходит за пределы оценок, полученных на основе результатов испытаний искусственно-состаренных сталей. Кроме того, эти данные косвенно подтверждают зависимости индексов [c.156]

    Таким образом, приведенная методика позволила изучить влияние такого повреждающего фактора, как деформационное упрочнение, на изменение механических свойств исследуемых материалов и, как следствие, на изменение обобщенного параметра контроля р. [c.39]

    Механические напряжения, вызванные условиями работы подземного сооружения, могут вызвать усиление коррозии за счет образования коррозионных элементов на участках поверхности сооружения, подверженных различным механическим напряжениям. При этом участки с большим механическим напряжением становятся анодами и корродируют более интенсивно. Периодические изменения механических напряжений могут вызвать и изменение условий константы сооружение — грунт и привести к растрескиванию стенки трубы. [c.13]

    Кальциевые смазки могут использоваться при температурах до -Ь100°С. При более высокой температуре происходит изменение механических свойств смазки — она разжижается и вытекает из узла трения. Типичными представителями кальциевых смазок являются солидолы, используемые как смазки массового назначения. [c.189]

    Эти стали выгодно отличаются от высоколегированных аусге-нитных сталей более низкой стоимостью, лучшей деформируемостью в горячем состоянии и обрабатываемостью резанием более высокой тетюпроводносзью и меньшим температурным коэффициентом линейного расширения, большей релаксационной способностью и возможностью изменения механических свойств в широких пределах посредством термической обработки. [c.221]

    Температура влияет на механические свойства материала. При повышении температуры ухудшаются механические свойства металлов. Например, при температуре выше 500° С механические свойстиа углеродистых сталей настолько снижаются, что применение их становится нерациональным. Правилами Госгортехнадзора [10] и требованиями стандарта [161 не допускается применение углеродистой стали для аппаратов, работающих под даилепием при температуре степки выше 475° С. Механические свойства легированных сталей при повышении температуры ухудшаются менее резко, поэтому их используют в этих условиях. При повышении температуры интенсифицируются коррозионные явления. Та1 , высокотемпературная сернистая коррозия становится заметной, начиная с температуры 250° С. Снижение температуры также вызывает изменение механических свойств материалов. [c.4]

    Величину коррозии по изменению механических свойств оценивают путем измерения предела прочности и относительного удлинения об.,азцов до и после коррозии. [c.337]

    Оценка коррозии по изменению механических свойств металла после воздействия на него агрессивной среды имеет значение для соответствующих расчетов при конструировании химической ащтарату-р[> .. Этот метод широко применяется наряду с массовым методом и при равномерной коррозии. При статическом ра-стяжешщ образца после коррозионных [c.341]

    Исследовано изменение механической прочности межфазных слоев на границе нефть - вода во времени для нескольких нефтш, образующих устойчивые эмульсии. Исследование проводили по методике, разработанной в институте физической химии АН СССР [20], с использованием прибора СНС-2. Механическая прочность межфазного ело характеризуется предельным напряжением сдвига Рт, определяемым по углу закручивания вольфрамовой нити, на которой подвещен стеклянный диск, находящийся на границе раздела нефть - вода. Экспериментально измерена механическая прочность межфазного слоя на границе нефть -вода через 5, 10, 100, 300, 1000 и 1500 мин после формирования слоя (высокосмолистая арпанская, смолистая ромашкинская и высокопара-финистая мангышлакская нефти). Все испытанные нефти, весьма различные по своему составу и свойствам, образуют при интенсивном перемешивании с водой (пластовой и дистиллированной) устойчивые эмульсии. [c.23]

    На рис. 5 показано изменение механической прочности межфазного слоя на границе нефть (ромашкинская) -пластовая вода при 20° С без дезмульгатора и с добавкой его. Как видно из графика, механическая прочность слоя, судя по предельному напряжению сдвига Р ,, достигает максимального значения за 24 ч, т. е. идет интенсивное старение межфазного слоя. При добавке деэмульгатора скорость старения значительно замедляется. [c.23]

Рис. 5. Изменение механической плотности межфазного слоя на границе нефть - пластовая вода от времени выдержки с различными деэмульгаторамн (расход50г/т при 20° С) Рис. 5. <a href="/info/532834">Изменение механической</a> <a href="/info/73293">плотности межфазного</a> слоя на границе нефть - <a href="/info/537563">пластовая вода</a> от <a href="/info/1838323">времени выдержки</a> с различными деэмульгаторамн (расход50г/т при 20° С)
Рис. 3. Изменение механической прочности слоя на границе ромашкинской нефти и пластовой воды в зависимости от температуры при продолжительности опыта Рис. 3. Изменение <a href="/info/1652399">механической прочности слоя</a> на границе ромашкинской нефти и <a href="/info/537563">пластовой воды</a> в зависимости от температуры при продолжительности опыта
    Обработку металлов в процессе изготовления аппаратуры следует проводить с учетом явлений наклепа, который возникает в результате пластических де р-маций и влечет за собой изменение механических свойств. Для углеродист <х сталей явление наклепа обнаруживается при температурах ниже 650— 700 °С, особенно опасен интервал 200—300 °С. Наклепанный металл обладает пониженными пластическими свойствами и повышенной прочностью, твердостью. С углеродистой стали наклеп снимается нагревом при 650—700 G. Опасность наклепа заключается также в том, что в наклепанном металле более активно развиваются процессы старения, коррозии, коррозионного растрескивания. [c.175]

    Основная цель методики - оценка остаточного ресурса сосудов и аппаратов, отработавших расчетный срок службы на базе банка данных обследования фактического их состояния неразрушающими и разрушающими методами и средствами диагностики, в частности, по изменению механических свойств металла и сварных соединений геомегрии и местоположению дефектов металлургического, технологического и эксплуатационною происхождения степени и характеру нагруженности конструктивных элементов свойствам и коррозионной активности рабочих сред, показателям надежности и работоспособности оборудования от начала эксплуатации до настоящего обследования и др. [c.3]

    Макроскопически термическое повреждение проявляется в изменении механических свойсхв материала- временного сопротивления, преде- [c.26]

    Силовые, температурные и коррозионные факторы приводят при эксплуатации колонн к появлению трепцт различной природы, язв, свищей, недопустимым пластическим деформациям, изменению механических свойств металла и другим повреждениям. В таблице 2.2 приведена классификация дефектов различной природы и диагностируемых параметров [59]. [c.29]


Смотреть страницы где упоминается термин Изменения механические: [c.328]    [c.119]    [c.23]    [c.304]    [c.586]    [c.158]    [c.89]    [c.28]    [c.61]   
Сочинения Научно-популярные, исторические, критико-библиографические и другие работы по химии Том 3 (1958) -- [ c.47 , c.49 ]




ПОИСК







© 2025 chem21.info Реклама на сайте