Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коллоиды коэффициент

    Теория медленной коагуляции лиофобных коллоидов получила развитие благодаря работам советского исследователя Н. А. Фукса, который рассчитал величину р, коэффициента, показывающего, во сколько раз уменьшится скорость медленной коагуляции по сравнению с быстрой. Наличие остаточного заряда создает энергетический барьер тем больший, чем больше величина дзета-потенциала. [c.426]


    Специфика коллоидных систем и растворов высокомолекулярных соединений проявляется в том, что масса отдельной частицы или отдельной микромолекулы намного больше массы молекулы дисперсионной среды (в случае золя) или растворителя (в случае раствора высокомолекулярного соединения). С этим связано различие многих молекулярнокинетических характеристик, на что обратил внимание Грэм, установивший различие коллоидов и кристаллоидов по величине коэффициента диффузии. [c.135]

    В табл. 27 приведены коэффициенты диффузии D для некоторых кристаллоидов и коллоидов при 18° С. [c.108]

    Коэффициенты диффузии некоторых кристаллоидов н коллоидов [c.109]

    В частности, было выявлено, что вещества, способные к образованию аморфных осадков, как, например, альбумин, желатин, гуммиарабик, гидроокиси железа и алюминия и некоторые другие вещества, диффундируют в воде медленно по сравнению со скоростью диффузии таких кристаллических веществ, как поваренная соль, сернокислый магний, тростниковый сахар и др. В табл. 29 приведены коэффициенты диффузии О для некоторых кристаллоидов и коллоидов при 18 С. Из таблицы видно, что между молекулярным весом и коэффициентом диффузии существует обратная зависимость. [c.132]

    Растворы ВМС так же, как и лиофобные коллоиды, характеризуются светорассеянием, хотя величина рассеяния для них не так велика, как для лиофобных систем. Изменение величины рассеяния света используют в методе определения относительной массы полимеров. Метод основан на измерении мутности разбавленных растворов ВМС. При этом экспериментально измеряется коэффициент ослабления света в результате светорассеяния при прохождении его через слой раствора. [c.361]

    В 1906 г. А, Эйнштейн установил зависимость между коэффициентом диффузии и другими физическими величинами систем (смеси газов, раствора или коллоида), в которых происходит диффузия [c.340]

    Существуют так называемые аномальные или неньютоновские жидкости (суспензии, коллоиды и др.), п которых касательные напряжения возможны также при покое, а коэффициент вязкости оказывается зависящим от градиента скорости. [c.14]

    Поскольку молекулы белка имеют суммарные электрические заряды, удаленные от изоэлектрической точки, они движутся в растворе, когда к нему приложено электрическое поле. Если в процессе участвуют коллоиды или макромолекулы, он называется электрофорезом. Ионная подвижность и, которую рассчитывают как и для других ионов (разд. 11.5), зависит от суммарного заряда и коэффициента трения. [c.603]


    Пластичность растворов коллоидов близка к вязкости и та и другая зависят от величины коэффициента внутреннего трения. [c.30]

    Если изменять вязкость раствора посредством изменения температуры или введения добавок, повышающих вязкость (тростниковый сахар, коллоиды), то одновременно меняется и коэффициент диффузии, который обратно пропорционален вязкости. [c.68]

    Седиментация (в большинстве случаев в ультрацентрифуге) используется для определения мольной массы молекулярных коллоидов (макромолекул). В этих же целях применяют измерения осмотического давления, вязкости, коэффициента диффузии. [c.499]

    У монтмориллонита при определенном соотношении катионов Na+ и Mg2+ или Na+и Са + можно повысить коэффициент устойчивости его водных суспензий от 2,0—3,0 до 7,0—7,8 и перевести систему из V в IV, III и даже О структурно-механические типы, которые удается получить для исследуемых систем только при стабилизации их высокоэффективными защитными коллоидами. [c.140]

    Коэффициент диффузии О изменяется с вязкостью среды, и поэтому изменение этого фактора сказывается на величине диффузионного тока. При прочих постоянных факторах сила тока должна быть обратно пропорциональна корню квадратному из относительной вязкости. Эта зависимость имеет силу лишь в отсутствие веществ, находящихся в коллоидном состоянии. Пропорциональность нарушается, если вязкость увеличивается вследствие прибавления желатины или другого гидрофильного коллоида. [c.84]

    Адденды 168, 170 Адсорбция коллоидами 139 Активность ионов 56. 85 коэффициент 57 Акцептор 172 [c.415]

    Наиболее легко экстрагируемыми Т-излучающими продуктами деления являются цирконий и ниобий, и понижение коэффициента распределения Т-активности при понижении кислотности, вероятно, обусловливается гидролизом циркония до менее экстрагируемой формы. При низких кислотностях (pH = О или более) цирконий гидролизуется с образованием цирконил- или 2г (0Н) + комплексов [12]. В результате гидролиза цирконий в растворах нитрата алюминия с дефицитом кислоты переходит в неэкстрагируемый коллоид [11]. [c.322]

    В коллоидных и дисперсных системах интенсивность прошедшего через систему света уменьшается не только за счет поглощения, но и за счет рассеяния света частицами дисперсной фазы. Поэтому, применяя уравнение Ламберта — Беера к окрашенным коллоидам, кроме коэффициента светопоглощения, приходится учитывать еще коэффициент светорассеяния. Уравнение принимает вид  [c.44]

    Усиливающее действие поли- и электролитных добавок к ПАВ основано на их совместном участии в адсорбционных процессах. На твердых поверхностях такие композиции образуют коллоиди-ро ванные адсорбционные слои с толстыми гидратными оболочками, которые обладают свойствами упруговязких веществ. Эти свойства обеспечивают большую устойчивость при контакте с движущейся по трубопроводу высоковязкой нефтью. Гидрофильность внутренней поверхности трубопровода под действием композиции ПАВ с активными до(5авками приводит к ослаблению силы молекулярного взаимодействия между твердой поверхностью и высоковязкой нефтью, к затруднению прилипания нефти к поверхности трубы. В результате резко снижаются предельное напряжение с/),вига нефти (в 10 раз) и коэффициент гидравлического сопротивления при ее движ ении по трубопроводу. [c.115]

    Интенсивность / света, прошедп1его через какую-то однородную среду — жидкость или раствор, всегда меньше интенсивности падающего света /(,. Это объясняется явлением поглощения (абсорбции) света средой (см. гл. 15). Каждая среда в зависимости от своих физических и химических свойств избирательно поглощает определенную часть спектра падающего света. Установлено, что высокодисперсные золи также поглощают часть проходящего света и для них, как и для молекулярных растворов, справедлив закон Ламберта — Бера. Однако в дисперсных системах возможны отклонения от этого закона, так как интенсивность проходящего света уменьшается не только в результате его поглощения, но и за счет рассеяния света частицами дисперсной фазы. Вследствие этого для окрашенных коллоидов в уравнение Ламберта — Бера кроме коэффициента светопоглощения вводят коэффициент светорассеяния  [c.390]

    Метод основан на взаимодействии германия (IV) с фенилс ]луоро-ном в кислом растворе с образованием красного осадка. При малом количестве германия появляется суспензия, которую можно стабилизовать добавлением защитного коллоида. Соединение германия с фенилфлуо-роном не экстрагируется органическими растворителями, но флотируется. Изменение концентрации кислоты в сравнительно широких пределах (0,3—1,5 н.) не влияет на образование этого соединения. При меньшей кислотности выпадает осадок реактива. Максимум поглощения окрашенных растворов фенилфлуората германия находится при 500 нм, однако при измерениях лучше пользоваться светофильтром с максимумом светопропускания 530 нм. Молярный коэффициент поглощения (е) комплекса 38500 800. [c.381]


    Модель, положенная в основу теории, представляет собою коллоидный раствор, oдepлiaщий первоначально сферические частицы одинакового размера со счетной (количественной) концентрацией фо При рассмотрении механизма взаимодействия двух частиц принимается простое допущение их объединение происходит тогда и только тогда, когда одна из них попадает в сферу действия другой (соприкасается с ней). Задача заключается в опреде--лении счетной концентрации фь фг, фз, . простых, вторичных, третичных частиц и т. д. в момент времени т. Задача о коагуляции коллоидов явилась первым прилон ением разработанной Смолуховским теории броуновского движения. Поэтому, исходя из эквивалентности броуновского движе- ния и молекулярной диффузии, он рассматривает решение уравнения нестационарной диффузии к поверхности сферы радиуса Я с граничными условиями г=Я с=0 г >Д с= = Со и начальным условием т=0, г>Д с=со, где г — радиальная координата с — концентрация. На основе этого решения получена формула для определения количества вещества, адсорбированного за время т поверхностью шара. Если упростить ситуацию и считать рассматриваемый процесс квазистационарным, то эта формула имеет вид М=АпОЯсох, где — коэффициент диффузии. [c.108]

    Бранстед [323] спектрофотометрическим методом определил области существования и условия образования полимеров (рис. 9). Растворы с разной концентрацией плутония и азотной кислоты получали разбавлением водой раствора, содержащего 400 г л Ри (IV) и 2,5 М. НЫОз (прямая /). Считалось, что полимеризация в этих растворах имеет место, если молярный коэффициент погашения при 415 ммк более 20. Составу растворов, полученных через 10 мин. после разбавления, отвечают квадратные точки. Линии, соединяющие квадратные и круглые точки, отвечают процессу гидролиза, который сопровождается увеличением концентрации водородных ионов и выпадением твердой фазы в растворах с относительно большим содержанием плутония (область АБВ) или образованием устойчивого коллоида в растворах с ма- [c.32]

    В рамках теории устойчивости коллоидов (теории ДЛФО) радиус захвата — это расстояние между центрами частиц К, которому отвечает максимум на потенциальной кривой их взаимодействия. При этом чаще всего величина зазора между поверхностями частиц много меньше радиуса частиц а, поэтому с хорошей точностью можно считать, что Я = 2а. Коэффициент диффузии 0 = кТ 6т1т1а также определяется радиусом частиц, поэтому частота столкновений д оказывается не зависящей от их размера  [c.696]

    Коэффициент диффузии О, а следовательно, и ток диффузии завч-сят от вязкости среды. При прочих равных условиях сила тока обратно пропорциональна квадратному корню из относительной вязкости среды. Такое соотношение имеет место только в отсутствие коллоидальных веществ в растворе и нарушается, когда вязкость раствора возрастает вследствие добавления желатины или другого гидрофильного коллоида. [c.168]

    При обработке исходных растворов, содержащих растворенные вещества с низким значением коэффициента диффузии, концентрационная поляризация может стать значительной независимо от типа потока (ламинарного или турбулентного). Как показано на фиг, 14, кривые изменения потоков через ультрафильтрационные мебраны трех разных типов при повышении давления становятся прямыми линиями при значениях, которые существенно ниже значений потоков для чистой воды. Макромолекулы и коллоиды, находящиеся в обрабатываемой ультрафильтрацией жидкости, скапливаются у поверхности мембраны и образуют липкий слой геля, примыкающий к мембране. Аналогичные явления наблюдаются и при концентрировании с помощью ультрафильтрациониых или обратноосмотических мембран пищевых продуктов. [c.181]

    При переработке сахарной свеклы пониженного качества получают диффузионный сок, в котором содержатся несахара, отрицательно влияющие на физико-химические свойства сока первой сатурации (дисперсная фаза этого сока состоит главным образом из частиц карбоната кальция величиной 5—25 мкм). В сок I сатурации из свекловичной стружки переходит значительное количество полисахаридов — леван и декстран общее содержание коллоидов составляет 5—12 % к массе сухих веществ [154]. Наличие несахаров значительно ухудшает седиментационные и фильтрационные показатели сока I сатурации повышается фильтрационный коэффициент, снижается скорость осаждения взвешенных веществ и производительность оборудования для отстаивания и фильтрования, а также завода в целом, увеличиваются количество промоев и потери сахара в фильтрационном осадке. [c.153]

    Многие соединения металлов (особенно высоковалентных) с реактивами этой группы нерастворимы в воде, и поэтому часто необходимо применять стабилизаторы (желатину, крахмал, гуммиарабик и т. п.) для удержания окрашенных соединений в виде коллоидных взвесей. Вместо защитных коллоидов предлагают иногда добавлять сульфосалициловую кислоту. При этом обра- зуется, по-видимому, не лак , содержащий ион металла и краситель, а тройное соединение — металл — краситель — сульфосалициловая кислота. Имеет значение также разрушение полимерных форм основных солей металла вследствие комплексообразования с сульфосалициловой кислотой. Оптическая плотность раствора (молярный коэффициент поглощения) в этом случае уменьшается приблизительно на 20%, но соединения хорошо растворимы в воде, что значительно облегчает их применение лучше соблюдается закон Бэра. Уменьшение же чувствительности на 20% не имеет практического значения. Однако введение большого количества сульфосалициловой кислоты приводит к ошибочным результатам, так как она может разрушить окрашенное соединение. [c.280]

    При некоторой, определенной для каждой почвы, влажности растения завядают и, если содержание воды не увеличивается,— погибают. В количественном выражении эта влажность приблизительно равна двойной максимальной гигроскопичнофти почвы. Она тем выше, чем тяжелее механический состав почвы и чем больше в ней гумуса. Таким образом, этот мертвый запас влаги связан с коллоидами почвы и возрастает с повышением их содержания. Чаще всего этот уровень влажности называют коэффициентом завядания растений или влажностью завядания. [c.75]

    На основании исследования зависимости распределения с ТТА между водным раствором и бензолом от изменения pH авторы пришли к выводу, что в 2 м. НСЮ4 присутствует главным образом в виде и 2гОН +, а при более низкой кислотности — в виде 2г(0Н)2 и 2г(ОН)з. Было отмечено также влияние неизвестных загрязнений в водном растворе, вызывающее уменьшение коэффициента распределения и указана возможность образования коллоидов циркония в слабокислых растворах. [c.144]

    Защитными коллоидами могут служить клей, желатин, казеинат натрия или аравийская камедь. В качестве поверхностноактивного вещества можно использовать любое из большого ассортимента синтетических детергентов (при условии, что оно будет смешиваться с эмульсионной системой), например сульфированные глицериды жирных кислот, алкилсульфаты, алкиларилсульфонаты и неионогенные соединения. Эти вещества обладают способностью создавать эмульсию, состоящую из более мелких частиц, что, в свою очередь, увеличивает поверхностную активность. Если защитного коллоида, содержащегося в эмульсии, не хватит для компенсации этого увеличения, то может произойти реверсия эмульсии в систему вода в масле . В состав белых масляных жидкостей входят небольшие количества эмульгаторов, в то время как в черных жидкостях их больше. Поэтому белые масляные жидкости, как правило, дешевле, если расчет ведется на единицу бактерицидной активности. Далее, черные жидкости редко содержат более 10% воды, в белых содержание воды не меньше 45%. И белые, и черные жидкие дезинфекционные препараты были стандартизованы в 1961 г. British Standard Institution. Для них были установлены следующие фенольные коэффициенты 5—7, 10—12, 18—20 и коэффициенты Чик-Мартина 1 и 4,4. [c.269]

    С теоретической точки зрения особьпг интерес представляет связь между коэффициентом а и физико-химическими свойствами иоверхности раздела, например -потенциалом. Тогда разработка теории медленной коагуляции и вообще теории устойчивости лиофобных коллоидов была бы закончена и явление полностью объяснено. Однако до настоящего времени этот основной вопрос исчерпывающе [c.148]


Библиография для Коллоиды коэффициент: [c.79]   
Смотреть страницы где упоминается термин Коллоиды коэффициент: [c.44]    [c.180]    [c.98]    [c.32]    [c.109]    [c.24]    [c.144]    [c.67]    [c.232]    [c.438]    [c.127]   
Физическая и коллоидная химия (1960) -- [ c.205 ]




ПОИСК





Смотрите так же термины и статьи:

Коллоиды



© 2025 chem21.info Реклама на сайте