Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электродвижущая сила водородного электрода

Рис. 101. Зависимость электродвижущей силы от диэлектрической проницаемости в смесях воды с этиловым спиртом, поданным А. И. Бродского (левая ордината— потенциалы электродов (,, отнесенные к водородному электроду, правая ордината — потенциалы цепей) Рис. 101. <a href="/info/68529">Зависимость электродвижущей силы</a> от <a href="/info/471">диэлектрической проницаемости</a> в смесях воды с <a href="/info/7424">этиловым спиртом</a>, поданным А. И. Бродского (левая ордината— потенциалы электродов (,, отнесенные к <a href="/info/2418">водородному электроду</a>, правая ордината — потенциалы цепей)

    Под потенциометрией понимается ряд методов анализа и определения физико-химических характеристик электролитов и химических реакций, основанных на измерении электродных потенциалов и электродвижущих сил гальванических элементов. Потенциометрические измерения являются наиболее надежными при изучении констант равновесия электродных реакций, термодинамических характеристик реакций, протекающих в растворах, определении растворимости солей, коэффициентов активности ионов, pH растворов. Особенно общирное применение нашли потенциометрические измерения именно при определении pH, которое является важнейшей характеристикой жидких систем. Для этого используют электрохимическую цепь, составленную из электрода сравнения и индикаторного электрода, потенциал которого зависит от концентрации (активности) ионов Н (так называемые электроды с водородной функцией). К таким электродам относятся, например, рассмотренные ранее водородный и стеклянный электроды. [c.264]

    Как известно из физической химии, скачок потенциала между двумя фазами не может быть измерен, но можно измерить компенсационным методом электродвижущую силу элемента, составленного из исследуемого электрода (например, металла в электролите) и электрода, потенциал которого условно принят за нуль. Таким электродом служит стандартный водородный электрод, а электродвижущую силу гальванического элемента, составленного из стандартного водородного электрода и из исследуемого электрода, принято называть электродным потенциалом, в частности электродным потенциалом металла. [c.150]

    Для измерения относительного электродного потенциала какого-либо металла составляют гальванический элемент из стандартного водородного электроде и нз исследуемого металлического электрода, погруженного в раствор, содержащий 1 моль/л ионов данного металла измеряют электродвижущую силу составленного элемента и, взяв полученное значение ее с обратным знаком, вычисляют электродный потенциал металла (если исследуемый металл является в составленном элементе анодом). Установка для определения электродных потенциалов металлов с помощью водородного электрода показана на рис. 29. Для внешней цепи водородный электрод будет положительным полюсом, если в паре с ним находится электрод из активного металла, и отрицательным, если в паре с ним находится электрод из неактивного (благородного) металла. [c.205]

    Можно измерить лишь сумму напряжений Гальвани в виде электродвижущей силы (э.д.с.) или, лучше сказать, напряжение гальванической ячейки [7—9], представляющей собой систему двух электродов с контактирующими электролитными растворами (разд. 4.2). При применении в качестве одного из электродов или полуэлемента водородного электрода, стандартный потенциал которого условно принят равным нулю, измеренная э.д.с. соответствует относительной величине потенциала данной системы э.д.с. в этом случае называют электродным потенциалом Е. В соответствии с этим уравнение Нернста принимает следующий вид  [c.98]


    Из уравнения видно, что электродвижущая сила водородно-кислородного элемента в том случае, если электроды погружены в один и тот же электролит, является постоянной и не зависит от природы электролита, с о подтверждается наблюдениями, показывающими, что эдс водородно-кислородного элемента для различных растворов кислот и щелочей имеет одинаковые значения. [c.52]

    Ввиду того что абсолютные электродные потенциалы входят в выражение электродвижущей силы с противоположными знаками, они могут быть заменены величинами, отличающимися от них постоянным слагаемым. Вместо абсолютного электродного потенциала, равного скачку потенциала на границе металл -раствор, удобно использовать ЭДС элемента, содержащего кроме данного металла и раствора еще и другой электрод, который во всех случаях должен быть одним и тем же. В качестве такого электрода сравнения принят стандартный водородный электрод, принцип действия которого будет рассмотрен в дальнейшем. [c.234]

    Значения электродвижущей силы каломельного электрода ( ) по отношению к нормальному водородному электроду (в милливольтах) [c.80]

    Делались попытки подойти к нахождению изменений свободной энергии при реакции по ее индивидуальным стадиям, а именно по скрытой теплоте испарения и работе выхода металла, ионизационному потенциалу и теплоте сольватации иона, а также по изменению энтропии при реакции. Как правило, из-за трудностей измерения или расчета разности потенциалов электрод —электролит для отдельного электрода прибегают к использованию стандартных полуэлементов, с которыми может быть проведено сравнение. Электродвижущая сила водородного электрода условно принята за нуль, в действительности ее расчетная величина примерно равна 0,46 в. [c.173]

    Надо заметить, что измерение электродвижущих сил гальванических элементов позволило оцепить ряд напряжений металлов с количественной стороны. Если измерять ЭДС различных гальванических элементов, приняв один из электродов за стандартный (им выбран водородный электрод), то можно получить относительные величины потенциалов других электродов. [c.106]

    Электродвижущая сила такого амальгамного элемента равна разности между потенциалами амальгамного и водородного электродов  [c.162]

    Разность электродных потенциалов — это электродвижущая сила (ЭДС) гальванического элемента. Так как водородный электрод служит электродом сравнения, для которого о=ОВ, то измеряемая ЭДС рассматриваемого элемента — это потенциал медного электрода по отношению к водородному. Ниже значения электродных потенциалов будем обозначать символом Е (иногда пользуются символом ф), как и ЭДС электродных реакций. Таким образом, потенциалы металлов можно сравнивать по ЭДС гальванической цепи с водородным электродом. [c.326]

    Разность электродных потенциалов Е — это электродвижущая сила (эдс) гальванического элемента. Так как водородный электрод служит электродом сравнения, для которого °н /н2 = = 0, то измеряемая эдс рассматриваемого элемента — это потенциал медного электрода по отношению к водородному. [c.261]

    Таким образом, pH при разбавлении почти не меняется. Так как приведенная выше буферная смесь имеет вполне определенное pH, ее используют для приготовления водородного (ацетатного) электрода сравнения, который служит эталоном при измерениях электродвижущих сил (э. д. с.). [c.83]

    Если составить элемент из электрода с постоянным потенциалом (например, нормального водородного или каломельного электрода) и электрода, опущенного в раствор, где меняется концентрация ионов, то по изменению электродвижущей силы этого элемента можно следить за изменением концентрации ионов в растворе. На этом основан метод потенциометрического титрования, применяющийся в химических количественных исследованиях реакций нейтрализации, осаждения и окисления-восстановления. [c.101]

    Если пластинку любого металла, погруженного в раствор его же соли, содержащий 1 моль ионов металла в 1000 г воды, соединить с водородным электродом, то получится гальванический элемент, электродвижущую силу (ЭДQ которого легко измерить. Эта ЭДС, измеренная при 25 °С, и называется стандартным электродным потенциалом Е° данного металла. [c.153]

    В вопросах 3-17—3-30 мы рассмотрели две гальванические цепи цинковый электрод — водородный электрод и медный электрод — водородный электрод. Электродвижущая сила первой цепи в стандартных условиях (стандартный потенциал цинка) равна °=—0,76 в и второй цепи (стандартный потенциал меди) °=+0,34 в. Соберем теперь цепь из медного и цинкового электродов. Закончите рис. 3.4. [c.100]

    Если пластинку металла, погруженную в раствор его соли с концентрацией ионов металла, равной 1 моль/л, соединить со стандартным водородным электродом, то получится гальванический элемент. Электродвижущая сила этого элемента (ЭДС), измеренная при 25 °С, и характеризует стандартный электродный потенциал металла. [c.80]

    Схема установки для определения потенциала растворения металла по сравнению с водородным электродом компенсационным методом приведена на рис. 123, где V — элемент Вестона с электродвижущей, силой 1,083 В, почти не зависящей от температуры. Элемент Вестона включается на сопротивление АВ (с линейным законом изменения сопротивления), исследуемый элемент включается на это же сопротивление через скользящий контакт С. Если падение внешнего потенциала от элемента Вестона на участке АС равно ЭДС элемента, то гальванометр (Г) покажет отсутствие тока. Отсюда легко найти ЭДС испытуемого элемента (Дё ) [c.233]


    Для определения стандартного потенциала какого-лйбо металла можно воспользоваться гальваническим элементом — системой из двух электродов, одним из которых служит нормальный водородный электрод, а другим — электрод испытуемого металла, погруженный в раствор его соли с активностью катиона 1 моль л . Электродвижущая сила такого гальванического элемента характеризует окислительно-восстановительную способность металла относительно стандартного водородного электрода и представляет собой, таким образом, его стандартный потенциал. [c.159]

    В современной электрохимии электродный потенциал (а также окислительно-восстановительный и потенциал газового электрода) приравнивают электродвижущей силе цепи, составленной из испытуемого электрода и стандартного водородного электрода (см. 2). [c.196]

    Если теперь пластинку любого металла, погруженную в раствор его соли с концентрацией ионов металла 1 моль/л, соединить со стандартным водородным электродом, как показано иа рис. 12.4, то получится гальванический элемент (электрохимическая цепь), электродвижущую силу (сокращенно ЭДС) которого легко измерить. Эта ЭДС и называется стандартным электродным потенциалом данного [c.229]

    Солевой ошибкой называется разность между электродвижущей силой какого-либо электрода в присутствии посторонней соли заданной концентрации и его электродвижущей силой в отсутствие соли, измеряющаяся по отношению к водородному электроду, погруженному в тот же раствор. [c.497]

    Для определения разности потенциалов между электродами, или электродвижущей силы испытуемого элемента (состоящего из водородного электрода с испытуемой жидкостью и каломельного электрода), применяют компенсационный метод, описанный в предыдущей работе. [c.92]

    Пользуясь методом измерения электродвижущих сил, точные результаты можно получить, если в изучаемых элементах диффузионный потенциал будет отсутствовать (элементы без переноса). С этой целью можно использовать элемент, составленный из хлорсеребряного и водородного электродов, опущенных в один и тот же раствор соляной кислоты  [c.140]

    Концентрация водородных ионов может быть также определена электрометрически путе..м измерения электродвижущей силы водородного электрода, по-мещенното. в раствор и соединенного с электродом известной элактродвижущей силы, каким является каломельный элемент. Если определенную таким образом электродвижущую силу сопоставить с электродвижущей силой нормального водородного электрода, то [Н ] возможно вычислить, пользуясь формулой Нернста (стр. 56)  [c.75]

    Как мы вадели выше, электродвижущая сила водородно-кислородной цепи зависит от концентрации обоих газов при этом поч и безразлично, применять ли в качестве электролита кислоту или основание. Электродвижущая сила цепи составляется из скачка потенциала у водородного электрода и скачка потенциала у кислородного электрода. При данной концентрации газов первый зависит от концентрации ионов водорода, а второй — от концентрации ионов гидроксила. Но так как, по закону действия масс, произведение концентраций водородных и гидроксильных [c.303]

    Величины pH обычно выражают с точностью до сотых долей едпиицы. С такой точностью можно определить величину pH, измеряя электродвижущие силы с помощью водородного электрода, находящегося в испытуемом растворе, и второго стандартного электрода, потенциал которого известен. Индикаторный метод меиее точен, и им можно определить величины pH с точностью до целых чисел или до десятых долей единицы. Индикаторный метод основан на сравнении окраски индикатора в испытуемом раст1юре с его окраской в растворах с известными величинами pH. [c.12]

    Таким образом, электродным потеициалом любого неизвестного электрода, опущенного в раствор, содержащий его ионы, принято называть электродвижущую силу элемента, составленного из исследуемого электрода и водородного электрода, находящегося в цормальных условиях. Если все вещества, участвующие в электрохимическом процессе, цротекающем в обратимом элементе,. находятся в нормальных условиях, т. е. их активности. или отношшие их активностей равны едини це, э. д. с. такого элемента равна своему нормальному (стандартному) значению. В соответствии с этим нормальным (стандартным) электродным потенциалом называют потенциал любого электрода, опущенного в раствор, содержащий его ионы, при условии, если активность или отношение активностей ионов, относительно которых электрод является обратимым, равны единице. [c.147]

    Исходя из правила знаков для элементов и цепещ соглаоно которому электродвижущая сила любого элемента положительна, для нормальных электродных потенциалов принимают тот знак, который он имеет в паре с водородным нормальным электродом, если водородный электрод записан слева в цепи. Это значит, что в цепи I — Сц2+/Си положительный полюс, а в цепи П — 2п2+/2п отрицательный полюс. В соответствии с этим при а + = си2+ иaJ + == + нормальный потенциал медного электрода си +/Си + 0,34 в, а цинкового электрода 2гЗ+/2п = --0,76 в. [c.147]

    Смещение потенциала электрода от равновесного под действием тока, вызванное изменением химического состояния его, называется химической поляризацией. В результате химической поляризации электродов возникает гальванический элемент, электродвижущая сила которого препятствует электролизу. Э. д. с. водородно-кислородного элемента при 25°С равна 1,227 в (см. табл. 18). Однако при электролизе N32804 вследствие накопления щелочи у катода (pH > 7) и кислоты у анода (pH < 7) обратная электродвижущая сила не- [c.212]

    По определению условный (относительный) окислительно-восстановительный потенциал редокс-пары (эмектродпый потенциал редокс-пары) — это электродвижущая сила (ЭДС) гальванической цепи, составленной из данного окислительно-восстановительного электрода и стандартного водородного электрода При этом в схеме записи гальва- [c.149]

    НлО+ -1-е-=Н-1-Н20 Если пластинку металла, погруженную в раствор его соли с активностью ионов, равной единице, соединить со стандартным водородным электродом, как показано на рис. 62, то получится гальванический элемент (электрохимическая цепь), электродвижущую силу (ЭДС) которого легко измерить. ЭДС, измеренная при 25 °С, и будет величиной стандартного электродного потенциала металла. Стандартный электродньсй потенциал обычно обозначают Е°. [c.230]


Смотреть страницы где упоминается термин Электродвижущая сила водородного электрода: [c.377]    [c.502]    [c.380]    [c.71]    [c.179]    [c.294]    [c.190]    [c.274]    [c.151]   
Краткий курс физической химии Издание 3 (1963) -- [ c.419 ]




ПОИСК





Смотрите так же термины и статьи:

Водородный электрод

Электродвижущая сила ЭДС

Электродвижущая сила электродов



© 2025 chem21.info Реклама на сайте