Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электродвижущая сила электродов

    Стеклянный электрод (см. рис. 82). В 1909 г. Ф. Габер предложил стеклянный электрод для определения pH растворов. Электродвижущая сила электрода меняется в зависимости от pH. Он представляет собой тонкостенный (0,06—0,1 мм) стеклянный шарик, [c.498]

    Следовательно, электродвижущая сила зависит от разности концентраций водородных ионов. Как указывалось, водородные ионы в растворах гидратированы с образованием НзО В этой форме протон достигает стеклянной мембраны. Таким образом, действие стеклянного электрода связано с переносом гидратированных протонов. В крайней кислой области активность воды понижается при высокой концентрации кислоты. Эта пониженная активность воды приводит к падению электродвижущей силы электрода. [c.145]


    Важнейшей количественной характеристикой электрохимического элемента или цепи элементов является электродвижущая сила (э. я. с., обозначаемая в дальнейшем через Е), которая равна разности потенциалов правильно разомкнутого элемента, т. е. разности потенциалов между концами проводников первого рода из одного и того же материала, присоединенных к конечным электродам элемента (цепи). Знак э.д.с. совпадает со знаком суммарной разности потенциалов цепи или противоположен ему, в зависимости от принятой системы знаков. [c.518]

    А Электродвижущая сила электрохимической цепи считается положительной, если катионы при работе цепи проходят в растворе от электрода, записанного в схеме цепи слева, по направлению к электроду, записанному справа, и в этом же направлении движутся во внешней цепи электроны. При этом правый электрод заряжен положительно относительно левого. Если схема цепи записана так, что движение катионов в электролите и электронов во внешней цепи происходит справа налево, то э. д. с. такой цепи отрицательна. Выполняя это условие, можно легко найти суммарную э.д.с. цепи из нескольких элементов. [c.522]

    Величины Аф обоих электродов складываются в электродвижущую силу концентрационной поляризации, направленную против приложенной к электролитической ванне разности потенциалов, поэтому последняя должна быть увеличена на э. д. с. концентрационной поляризации, чтобы была получена необходимая для электролиза сила тока. Так как в электрохимических производствах при электролизе применяют токи довольно большой плотности, возникают значительные э.д.с. поляризации, вызванные изменениями концентраций у поверхности электродов. Появление э. д. с. концентрационной поляризации увеличивает расход электрической энергии, поэтому устранение или уменьшение концентрационной поляризации является важной практической проблемой. Одной из основных мер уменьшения концентрационной поляризации является перемешивание растворов. Возникновение концентрационной поляризации снижает [c.610]

    Таким образом, если отсутствует электрохимический процесс, пропускание электричества через электролит приводит к чисто физическому процессу заряжения электродов, к изменению их потенциалов. Возникает электродвижущая сила, направленная против внешнего напряжения, и ток прекращается. [c.612]

    О веществе, которое теряет электроны, говорят, что оно окисляется, а электрод, на котором это происходит, называется анодом. Вещество, поглощающее электроны, восстанавливается на катоде. Давление , которое создают электроны между анодом и катодом, называется напряжением гальванического элемента, или его электродвижущей силой (э.д.с.). Если напряжение элемента положительно, это означает, что происходящая в нем реакция протекает самопроизвольно, причем электроны поступают с анода на катод. Отрицательное напряжение элемента означает, что самопроизвольно протекает обратная реакция. Напряжение элемента связано со свободной энергией протекающей в нем реакции соотношением [c.193]


    Как известно из физической химии, скачок потенциала между двумя фазами не может быть измерен, но можно измерить компенсационным методом электродвижущую силу элемента, составленного из исследуемого электрода (например, металла в электролите) и электрода, потенциал которого условно принят за нуль. Таким электродом служит стандартный водородный электрод, а электродвижущую силу гальванического элемента, составленного из стандартного водородного электрода и из исследуемого электрода, принято называть электродным потенциалом, в частности электродным потенциалом металла. [c.150]

    Проведем теперь эту же реакцию в гальваническом элементе (рис. 23, б). Для этого погрузим пластинку цинка (один электрод) в раствор сульфата цинка, а пластинку меди (другой электрод) — в раствор сульфата меди. Если соединить оба полуэлемента н-образной трубкой, заполненной токопроводящим раствором, то мы создадим гальванический элемент —источник электродвижущей силы (э. д. с.). Это элемент Даниэля — Якоби. В первом полу-элементе будет происходить растворение цинка с превращением его атомов в ионы, т. е. процесс 2п (к) = 2п2+(р) + 2в- [c.60]

    Электродвижущие силы. Электродные процессы как в гальванических элементах, так и при электролизе всегда связаны с изменением заряда атомов (ионов) или атомных групп, т. е. представляют собой окислительно-восстановительные реакции. Для получения электрического тока необходимо провести окислительно-восстановительную реакцию в такой форме, чтобы процессы окисления и восстановления происходили раздельно (на разных электродах) и в результате этого электроды переводились бы в такие состояния, при которых электрические потенциалы их были различны. [c.415]

    При погружении в раствор электролита двух разных металлов, соединенных проводником, по последнему проходит ток вследствие наличия в образовавшемся гальваническом элементе электродвижущей силы. Каждый гальванический элемент характеризуется определенной электродвижущей силой 7, численно равной разности потенциалов между его электродами в разомкнутом состоянии, т. е. при условии, что сила тока в цепи равна нулю, [c.27]

    Электрической характеристикой электрода является потенциал, а электрохимической цепи —электродвижущая сила (э. д. с.), равная алгебраической сумме скачков потенциала, возникающих на границах раздела фаз, входящих в состав цепи. [c.468]

    Для измерения относительного электродного потенциала какого-либо металла составляют гальванический элемент из стандартного водородного электроде и нз исследуемого металлического электрода, погруженного в раствор, содержащий 1 моль/л ионов данного металла измеряют электродвижущую силу составленного элемента и, взяв полученное значение ее с обратным знаком, вычисляют электродный потенциал металла (если исследуемый металл является в составленном элементе анодом). Установка для определения электродных потенциалов металлов с помощью водородного электрода показана на рис. 29. Для внешней цепи водородный электрод будет положительным полюсом, если в паре с ним находится электрод из активного металла, и отрицательным, если в паре с ним находится электрод из неактивного (благородного) металла. [c.205]

    Потенциометрический метод, основанный на измерении электродвижущих сил (э.д.с.) обратимых гальванических элементов, используют для определения содержания веществ в растворе и измерения различных физико-химических величин. В потенцио-метрии обычно применяют гальванический элемент, включающий два электрода, которые могут быть погружены в один и тот же раствор (элемент без переноса) или в два различных по составу раствора, имеющих между собой жидкостной контакт (цепь с переносом). [c.115]

    Одной из важнейших характеристик гальванического элемента является его электродвижущая сила Е — разность потенциалов двух электродов, составляющих этот элемент  [c.37]

    Одна из важнейших характеристик гальванического элемента -его электродвижущая сила А = ок - 1/оа. где оа потенциалы катода и анода. Например, для элемента, составленного из медного и ци кового электродов, погруженных в нормальные растворы собственных ионов, пользуясь электрохимическим рядом напряжений (см. табл. 3.1), определим Д = 1/си Щ.п +0,337 - (-0,763) = 1,1 В. Полученное значение совпадает с измеренным для соответствующего гальванического элемента. [c.36]

    Если в цепи 1 > Уз, то ток всегда течет от к Уд для того чтобы цепь была замкнутой, ток внутри электрической батареи — источника тока — должен течь в обратную сторону, т. е. от отрицательного электрода к положительному. Это осуществляется за счет так называемой электродвижущей силы (ЭДС), уравновешивающей разность потенциалов во внешней цепи и падение потенциала на внутреннем сопротивлении Ло батареи  [c.185]


    Тогда при коротком замыкании электродов с помощью проводника первого рода из-за разности величин электродных потенциалов ячейка работает самопроизвольно - в цепи течет ток, т.е. выделяется электрическая энергия. Это происходит до тех пор, пока потенциалы электродов не достигнут одинаковых значений. Поэтому такие элементы могут служить источником постоянного тока (например, сухие батареи, кислотные и щелочные аккумуляторы и др.). Подобные электрохимические ячейки принято называть гальваническими элементами, разность потенциалов электродов в которых представляет собой электродвижущую силу (э.д.с.) элемента. [c.125]

    Электродвижущая сила. На границе соприкосновения электродов с электролитом возникает разность потенциалов. Если электроды выполнены из различных материалов или соприкасаются с разными по химическому составу или концентрации растворами, то потенциал одного электрода будет отличаться от потенциала другого. Электрод, заряжающийся до более положительного потенциала, называется катодом, а до меньшего потенциала — анодом. [c.15]

    Электродвижущая сила такого амальгамного элемента равна разности между потенциалами амальгамного и водородного электродов  [c.162]

    Всю установку можно рассматривать как сложный гальванический элемент с двумя электролитами (жидкость в кювете и ионизированный воздух) и тремя ловерхностями обратимым электродом в жидкости, границей раздела воздух — жидкость и воздушным электродом. Только на одной границе (воздух — жидкость) разность потенциалов изменяется от присутствия пленки монослоя. Поэтому разность потенциалов, возникающую на границе пленки монослоя — воздух определяют следующим образом. Сначала измеряют электродвижущую силу элемента при наличии поверхности чистой воды, затем наносят пленку нерастворимой жидкости и измеряют электродвижущую силу нового элемента. Разность потенциалов в пленке находят как разность между электродвижущими силами элементов в присутствии пленки и без нее. Во избежание действия внешних электростатических сил всю установку экранируют заземленной металлической сеткой (на рис. 25 пунктирная линия). Электрометр можно заменить ламповым потенциометром с большим сопротивлением. [c.66]

    Разность потенциалов электродов гальванического элемента называется его электродвижущей силой ЭДС( ). При расчете значения Е принято из значения потенциала фз электрода, записанного в обозначении состава гальванического элемента справа, вычесть значение потенциала ф1 электрода, записанного в обозначении состава слева, в начале записи Е = = Ф2—Ф1- [c.188]

    Согласно изложенному в разд. У.З, на электродах гальванического элемента устанавливаются электродные потенциалы и Фа, значения которых обусловлены материалом электродов и природой растворов. Разность этих потенциалов служит мерой способности гальванического элемента совершать электрическую работу и называется электродвижущей силой, сокращенно э. д. с. = ф2 —ф1 (У.2) [c.238]

    Следует отметить, что гальванический элемент, дающий электрический ток, находится в неравновесном состоянии. С уменьшением силы тока разность потенциалов между электродами возрастает. Если сила тока бесконечно мала и система практически находится в состоянии равновесия, то элемент работает обратимо. Максимальная разность потенциалов, достигаемая при обратимой работе гальванического элемента, называется его электродвижущей силой. [c.121]

    Электродвижущая сила любого гальванического элемента, составленного из двух различных электродов, имеющих одинаковые концентрации (активности) одноименных с металлом ионов, равна разности его нормальных потенциалов. В самом деле, исходя из уравнения Нернста, имеем  [c.135]

    Вм есте с электродами помещаются термометры сопротивления, которые компенсируют изменение электродвижущих сил электродов от температуры. Комплект электродов называется электродной станцией, или датчиком. Последние могут быть проточного и погружного типа. Суммарная электродвижущая сила изм еряется специальным высокоомным электронным потенциометром. [c.231]

    Каждая пара имеет определенный окислительно-восстанови-тельный потенциал и представляет собой полуэлемент. Когда два полуэлемента соединяют проводником первого рода, образуется гальванический элемент, имеющий собственную электродвижущую силу (э. д. с.). Направление этой э. д. с. противоположно той внеш ней э. д. с., которую прилагают при электролизе. Действительно например при электролизе 1 М раствора U I2 потенциал образую щейся у катода пары u +/ u равен стандартному потенциалу ее т. е. +0,34 в (поскольку концентрация Си -ионов равна I г-ион/л а концентрация твердой фазы Си постоянна), потенциал пары I2/2 I равняется +1,36 в, когда раствор становится насыщенным относительно СЬ при давлении его в 1 атм. Как известно, пара с меньшим потенциалом ( u V u) отдает в цепь электроны. Следовательно, при работе возникающего в результате электролиза гальванического элемента на электроде происходит процесс Си—2е- Си +. При этом медь растворяется, окисляясь до Си -+. [c.427]

    Итак, в результате выделения на электродах продуктов электролиза в системе возникает э. д. с., обратная внешней э. д. с. источника тока. Это явление называется электрохимической поляризацией, а возникающая обратная э. д.. с. — электродвижущей силой по.глризации. В существовании ее нетрудно убедиться, если, выключив во время электролиза источник тока, соединить проводником электроды с клеммами гальванометра. При этом стрелка гальванометра отклонится в сторону, противоположную той, в которую она отклонялась под влиянием внешней э. д. с. при электролизе. [c.427]

    Уравнения (10.30) и (10.32) следуе рассматривать как математическое выражение основных положений гидратациониой (сольватационной) теории электродвижущих сил и электродных иотенциа-лов. Э.д.с. и стандартный электродный потенциал иредставлены здесь в виде суммы двух слагаемых. Первое из них определяется свойствами электродов, второе — свойствами потенциалопределяю-щих ионов и природой растворителя. [c.225]

    Если при прохождении электрического тока в разных направлениях на поверхности электрода протекает одна и та же реакция, но в противоположных направлениях, то такие электроды, а также элемент или цепь, составленные из них, называют обратимыми. Электродвижущая сила ofipf] ] - ч -lv ат р]мач-тов является термодинамическим гвоигтвпм их. д—о. f nвw Цд-. [c.518]

    Для определения стандартного потенциала какого-лйбо металла можно воспользоваться гальваническим элементом — системой из двух электродов, одним из которых служит нормальный водородный электрод, а другим — электрод испытуемого металла, погруженный в раствор его соли с активностью катиона 1 моль л . Электродвижущая сила такого гальванического элемента характеризует окислительно-восстановительную способность металла относительно стандартного водородного электрода и представляет собой, таким образом, его стандартный потенциал. [c.159]

    Концентрационная поляризация возникает вследствие того, что по мере проведения электролиза концентрации электролита в анодном и катодном пространствах становятся различными. Например, при электролизе раствора AgNOз с серебряными электродами концентрация электролита в катодном пространстве уменьшается, а в анодном возрастает. Это приводит к образованию концентрационного элемента, описанного в 179, электродвижущая сила которого направлена против наложенной разности потенциалов. [c.448]

    Величины pH обычно выражают с точностью до сотых долей едпиицы. С такой точностью можно определить величину pH, измеряя электродвижущие силы с помощью водородного электрода, находящегося в испытуемом растворе, и второго стандартного электрода, потенциал которого известен. Индикаторный метод меиее точен, и им можно определить величины pH с точностью до целых чисел или до десятых долей единицы. Индикаторный метод основан на сравнении окраски индикатора в испытуемом раст1юре с его окраской в растворах с известными величинами pH. [c.12]

    Однако указанная последовательность разряда иоиов и их образования иа электродах часто нарушается в связи с явлением, которое получило название перенапряжения. Для осуи1еетв..тения разряда ионов и их образования на электродах к последним до.тж-на быть приложена определенная электродвижущая сила, вычисляемая по разности электродных потенциалов. Однако к ней до./1/к-ны быть добавлены еще электродвижущая сила, необходимая для преодоления сопротивления электролита, н сумма катодного и анодного неренапряжеии , которые обусловлены побочными п[)о-цессами, происходящими при электролизе на электродах. [c.208]

    Если пластинку металла, погруженную в раствор его соли с концентрацией ионов металла, равной 1 моль/л, соединить со стандартным водородным электродом, то получится гальванический элеглент. Электродвижущая сила этого элемента (ЭДС), измеренная при 25 °С, и характеризует стандартный электродный потенциал металла. [c.80]

    И менее точен, но зато значительно проще, чем метод Тизелиуса. На полоску фильтровальной бумаги, увлажненной буферным раствором, наносят в форме поперечной черточки или пятна исследуемый биоколлоидный раствор. Полоску помещают в горизонтальном положении в закрытое пространство, а концы ее погружают в буферный раствор, где находятся электроды. После подключения источника электродвижущей силы электрическое поле вызывает движение компонентов, находящихся в черточке или пятне, вдоль полоски. Скорость перемещения компонентов зависит от их электрофоретической подвижности. Через некоторое время электрофорез прекращают, бумагу высушивают и погружают в раствор красителя, который на биоколлоиде адсорбируется сильнее, чем на бумаге. По полученному изображению видно положение компонентов в конце электрофореза, и можно судить об их числе и электрофоретической подвижности. Из сказанного выше видно, что бумага играет роль пористой среды, препятствующей растеканию компонентов и их конвективному перемешиванию со средой, в которой протекает электрофорез . В последнее время вместо бумаги используют гелеобразные среды (агар-агар, желатин), которые дают более резко очерченные зоны. Электрофорез на бумаге (и в других средах) сопровождается побочными явлениями, такими, например, как перенос вещества, вызываемый миграцией испаряющегося буфера (Машбёф, Ребейрот и др., 1953 г.). Кроме того, было установлено (Шелудко, Константинов, Цветанов, 1959 г.), что, например, в желатине не только сама электрофоретическая подвижность некоторых красителей меньше, чем в воде или водных растворах, но и соотношение между подвижностями компонентов в этом случае совсем иное. Эти особенности метода еще не до конца изучены. Поскольку рассматриваемый метод имеет важное практическое значение, различные проблемы создаваемой в настоящее время теории электрофореза в пористых и гелеобразных средах п разнообразные методы его использования являются предметом многих научных трудов. Некоторое представление о них читатель может получить из монографии [6 1. [c.158]

    Если боковые стенки канала (г = а) представляют собой электроды, соединенные с внешней электрической ценью, то электродвижущая сила поддерживает разность потенциалов на этпх электродах. [c.215]


Смотреть страницы где упоминается термин Электродвижущая сила электродов: [c.341]    [c.250]    [c.619]    [c.206]    [c.210]    [c.268]    [c.61]    [c.156]    [c.131]    [c.212]    [c.239]    [c.35]    [c.61]   
Техно-химические расчёты Издание 4 (1966) -- [ c.247 ]




ПОИСК





Смотрите так же термины и статьи:

Измерение электродвижущей силы. Эталонные элементы и электроды сравнения

Кадмий амальгамный электрод электродвижущая сила, зависимость

Свойства растворов электролитов и электродвижущие силы Элементы и электроды

Электрод, электродный потенциал и электродвижущая сила (ЭДС) электрохимической цепи

Электродвижущая сила ЭДС

Электродвижущая сила водородного электрода

Электродвижущие силы. Теория гальванического элемента . 17. Электроды сравнения

Электроды сравнения Электродвижущие силы гальванических элементов



© 2024 chem21.info Реклама на сайте