Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворения потенциал, определени

    Условия пассивации видны на анодных поляризационных кривых сталей (рис. 100). Если повышать электродный потенциал нержавеющей стали в растворе серной кислоты, то плотность тока увеличивается до максимума, причем металл находится в активном состоянии (3) и растворяется, а плотность тока характеризует скорость растворения. При определенном потенциале пассивации (4) плотность коррозионного тока начинает резко понижаться металлическая поверхность пассивируется (2). Пассивацию связывают с образованием тончайшей защитной пленки, которая состоит в основном из оксида и гидроксида хрома. Если потенциал продолжать увеличивать до очень высоких значений, плотность тока снова возрастает вследствие так называемой транспассивной коррозии (1) . [c.109]


    Обращает на себя внимание тот факт, что термодинамическое определение поверхностного натяжения аналогично определению химического потенциала, только поверхностное натяжение характеризует межфазную поверхность, а химический потенциал — растворенное вещество. Обе величины — это частные производные от любого термодинамического потенциала, но в одном случае — по площади иоверхности, в другом — по числу молей вещества. [c.23]

    В результате такого определения понятия активности выражение для химического потенциала растворенного вещества как функции концентрации имеет вид  [c.32]

    Из большого числа аномальных явлений едва ли не первое место занимает эффект независимости скорости растворения метала, находящегося в активной области, от потенциала Е. Это относится к растворению амальгам щелочных металлов, железа, никеля, хрома, цинка, алюминия и его сплавов, кобальта, марганца, титана, германия, меди, сплавов на основе железа. Для этих металлов было установлено, что выход по току реакций их растворения в определенных условиях превышает 100%. [c.111]

    Наблюдая за изменением потенциала в ходе электроанализа, можно выбрать такое его значение, которое обеспечив.зе необходимую точность определения содержания растворенного вещества. [c.284]

    Если при анодном растворении металлов сообщит металлическому аноду потенциал, превышающий некоторую определенную величину, то металл также пассивируется. [c.635]

    Активности и коэффициенты активности растворенного вещества н растворителя можно вычислять также по другим равновесным свойствам раствора по понижению температуры замерзания, по повышению температуры кипения, по растворимости, по осмотическому давлению и др. Недостатком определения активности по этим равновесным свойствам раствора является то, что они зависят ие только от химического потенциала, но и от других парциальных мольных величин (парциальной мольной энтальпии, парциального мольного объема компонента и др.), которые нужно находить из опыта. [c.228]

    При анодном процессе растворения электрода может возникнуть его пассивация. При достижении определенного потенциала скорость растворения электрода резко уменьшается. Пассивация объясняется образованием на поверхности электрода плотной адсорбционной или фазовой пленки, например пленки окисла металла. [c.401]

    Серебро относится к элементам, которые восстанавливаются при потенциалах, более положительных, чем потенциал анодного растворения ртути потому его определение ведут на твердом платиновом электроде. [c.298]


    Начальное значение этого потенциала отвечает определенной скорости анодного процесса ионизации водорода, растворенного в никеле. С течением времени скорость анодной реакции должна постепенно уменьшаться за счет понижения концентрации растворенного водорода в поверхностном слое металла. В результате потенциал электрода будет постепенно смещаться в электроположительную сторону, что видно из данных рис. 133. При этом сдвиге потенциала на поверхности никелевого электрода возникает новая анодная реакция N -26-)-->N 2+, которая в сочетании с катодной реакцией восстановления кисло рода дает суммарную реакцию [c.297]

    Определение осмотического давления, данное выше, и рассуждения, приведшие к выводу уравнения (VII, 35), показывают, что осмотическое давление является тем добавочным давлением, которое увеличивает химический потенциал растворителя в растворе и этим компенсирует уменьшение химического потенциала растворителя, вызванное растворением второго компонента. Такая компенсация создает возможность равновесия раствора с чистым растворителем вособых условиях (наличия полупроницаемой перегородки). [c.246]

    В процессе гальваностатической кулонометрии диффузионный предельный ток уменьшается с уменьшением концентрации растворенных веществ. Поскольку для работы установки необходима постоянная сила тока, должны протекать и другие электродные реакции (других ионов или воды), что обусловливает увеличение электродного потенциала. Эти электродные реакции нарушили бы 100%-ный выход по току и сделали бы невозможным кулонометрическое определение веществ. [c.273]

    Если первоначально преобладает растворение металла, то переходящие в раствор катионы уносят с собой положительный электрический заряд. Раствор при этом заряжается положительно, а металл отрицательно. Ионы раствора, несущие избыточный положительный заряд, и оказавшиеся нескомпенсированны-ми свободные электроны металла притягиваются друг к другу и располагаются вблизи поверхности раздела фаз по обе стороны от нее, образуя так называемый двойной электрический слой, в пределах которого электрический потенциал резко изменяется. Возникающее при этом электрическое поле затрудняет растворение металла и усиливает обратный процесс. В дальнейшем устанавливается динамическое равновесие, обусловленное взаимной компенсацией этих процессов, и определенная разность потенциалов между металлом и раствором (рис. 12.1). [c.228]

    Иногда для осциллополярографических измерений применяют электрод в виде периодически сменяемой ртутной капли. Для этого устье капилляра закрывают иглой из нержавеющей стали. Игла прикреплена к железной пластинке, над которой расположен электромагнит. Включая электромагнит при помощи реле на определенное время, получают на конце капилляра каплю со строго воспроизводимыми размерами. При измерениях на висячей капле можно существенно уменьшить скорость наложения потенциала, что позволяет повысить чувствительность осциллографической поляро- графии. Кроме того, висячую кап- " лю применяют в так называемой полярографии с накоплением, ко-торая используется для определе- (-Г ния ультрамалых количеств катионов металлов в растворах. Для этого висячей капли подбирают таким образом, чтобы определяемые катионы могли разрядиться с образованием амальгамы, а затем линейно смещают потенциал капли в анодную сторону и измеряют ток анодного растворения амальгамы. Поскольку время предварительного электролиза на висячей капле можно в принципе выбрать сколь угодно большим, то можно накопить на электроде определяемое вещество, концентрация которого в растворе лежит за пределами чувствительности обычного полярографического метода или других его разновидностей. [c.207]

    На рис. 187 приведена полученная автором и Т. К. Атанасян зависимость скорости растворения алюминия, определенная по количеству металла, перешедшего в раствор, и выраженная в единицах плотности тока от потенциала У в растворах уксусной кислоты разных концентраций при 22° С. Как следует из приведенных на рис. 187, а графиков, коррозия алюминия в 2,75 3 и 7-н. растворах СН3СООН протекает при близких стационар- [c.279]

    Значение потенциала пары Аш /Ат " основано на измерении теплоты растворения америция, определенной Лором и Каннингемом [42]. Это значение потенциала, вероятно, несколько завышено. Значение потенциала пары америций (III)—америций (IV) было вычислено Эйрингом, Лором и Каннингемом [47] из теплоты растворения двуокиси америция в кислоте. Потенциал пары америций (V)—америций (VI) был измерен относительно потенциала пары церий (III)—цери" (IV) в 1 М хлорной кислоте и относительно потенциала пары —Н —в 1 М хлорной кислоте с использованием гладких платиновых электродов [63]. [c.398]

    Согласно Разеру, электронография менее чувствительна, чем потенциал растворения для определения тонких окисных пленок, но более чувствительна для определения толстых пленок [174]. Действительно, поверхность, имеющая потенциал растворения—1,20 е, дает диффрак-ционную решетку чистого алюминия, свободного от окислов пленка окиси алюминия должна иметь толщину [c.77]


    При помощи этого, а также ряда других методов удалось не только подтвердить сам факт обмена ионами, но и количественно оценить его. Поскольку в обмене участвуют заряженные частицы, то его интенсивность можно выразить в токовых единицах и охарактеризовать токами обмена / . Токи обмена относят к I см2 (I и ) поверхности раздела электрод — раствор они служат кинетической характеристикой равновесия между электродом и раствором при равновесном значении электродного потенциала и обозначаются / . Одни из первых работ по определению токов обмена были выголнены В. А. Ройтером с сотр. (1939). Значения токов обмена для ряда электродов приведены в табл. 10.2. Интенсивность обмена зависит от материала электрода, природы реакции и изменяется в широких пределах. По третьему принципу осмотической теории Нернста токи обмена возникают в результате существования сил осмотического давления раствора и электролитической упругости растворения металла. [c.218]

    Из металлов первой электрохимической группы наиболее полно изучена платина, хотя из-за высокой чувствительности ее водородного потенциала к примесям полученные данные не отличаются хорошей воспроизводимостью. Н( сомненно, что в области положительных потенциалов (не очень удаленных от обратимого потенциала водородного электрода) на поверхности платины всегда присутствует адсорбированный водород. Это установлено измерением мкости, а также другими методами. Так, количество адсорбированного водорода можно найти для каждого значения потенциала при помощи кривых заряжения, т. е. кривых, передающих изменение потенциала электрода с количеством подведенного электричества чли (при постоянной силе тока) с течением времени. При таком кулонометрическом определении количества водорода (или иного электрохимически активного вещества) необходимо, чтобы его выделение (или растворение) совершалось со 100%-ным выходом по току. Все возможные побочные реакции — электровосстановление или выделение кислорода, катодное восстановление или анодное окисление органических веществ и других примесей — должны быть полностью исключены. Этого можно достичь двумя методами. В первом из ннх сила накладываемого на ячейку тока настолько велика, что значительно превосходит предельные токи восстановления и окисления примесей их вредное влияние поэтому не проявляется. Заряжение электрода проводят с большой скоростью, а кривую заряжения регистрируют автомати- [c.414]

    Задачу определения скорости коррозии решают проще с помощью кинетической теории коррозии. В этом случае катодную и анодную поляризационные кривые снимают непосредственно на образце, коррозию которого изучают. Общую скорость коррозии выражают силой тока, отнесенной к единице всей поверхности металла, без разделения ее на катодные и анодные участки. При стационарном потенциале скорость коррозии (вырал<аемая силой тока анодного растворения металла), отнесенная ко всей его поверхности (т. е. включая и катодные зоны), должна быть равна скорости катодного процесса, например скорости выделения водорода. Последняя в случае снятия катодной поляризационной кривой будет равна силе тока, деленной на всю поверхность образца, включая анодные участки. Таким образом,если потенциал стационарен, то плотности тока для анодного и катодного ироцессов при указанном способе снятия поляризационных кривых должны быть оди-ипкопымп. При этом предполагают, тo омическими потерями можно пренебречь. [c.499]

    Большой вклад в изучение растворяющей и избирательной способностей полярных растворителей внесен А. 3. Бнккуловым. Из его работ [4, 7— 9] следует, что более избирателен тот растворитель, для которого этот показатель наибольший при растворении сложной смеси, кото,рый обеспечивает больший или равный отбор от потенциала извлекаемых компонентов и кратность которого к разделяемой смеси такая же, как для других сравниваемых растворителей. Для определения показателя избирательной способности предложено [4] эмпирическое уравнение, связывающее этот показатель с некоторыми физико-химическими свойствами растворителя  [c.57]

    Вагнер [4] предложил уточнение первого определения металл является пассивным, если при возрастании потенциала электрода скорость анодного растворения в данной среде резко падает. Вариант металл является пассивным, если при возрастании концентрации окислителя в растворе или газовой фазе скорость окисления в отсутствие вг.ешнего тока становится меньше, чем при более низких концентрациях окислителя. Эти альтернативные определения равнозначны в тех условиях, где применима электрохимическая теория коррозии. [c.71]

    Потенциал железа в растворах с pH < 10 лежит в активной области (от —0,4 до —0,5 В), в 1 н. МаОН он достигает 0,1 В, металл пассивируется, что соответствует определению 1 в гл. 5. При заметном повышении щелочности, например в 16 н. ЫаОН (43 %), пассивность нарушается и потенциал резко сдвигается в активную область (—0,9 В). Скорость коррозии повышается до 0,003—0,1 мм/год, т. е. 0,05—2,0 г/(м -сут), но это еще относительно низкая скорость. При таких pH железо корродирует с образованием растворимого феррита натрия NaFe02. В отсутствие растворенного кислорода реакция протекает с выделением водорода и образованием гипоферрита натрия Na2Fe02 [9]. Резкое снижение потенциала железа в крепких щелочах объясняется уменьшением активности ионов Ре , образующих комплексный анион Ре02- [c.106]

    Значения напряжения разложения различных веществ, составляю-пше ряд напряжения, находят экспериментально. Наиболее точно потенциал разложения можно определить путем построения соответствующей электрохимической цепи и определения ее э. д. с. Если элек-то тролиз не сопровождается поляризацией или деполяризацией, можно получить приемлемые результаты методом построения кривой /— И. При снятии кривой /— и анодные и катодные пространства должны быть тщательно разделены диафрагмой для предупреждения проникания растворенного в электролите металла к аноду. [c.468]

    Оценка имеющегося экспериментального материала показывает, что координационные свойства растворителя можно количественно описать и предсказать с определенной степенью точности на основе донорных и акцепторных чисел. Это касается прежде всего ряда свойств, связанных с сольватацией растворенных частиц. Если доминируют нуклеофильные свойства растворителя (большое )лг, малое Лдг), то достаточно учитывать донорные числа. Так, при полярографическом осаждении катионов из таких растворителей установлена связь между потенциалом полуволны окислительно-восстановительной системы, например Ма++е Ка, и донорным числом ДПЭ-растворителя, что позволяет заранее оценить неизвестное значение потенциала полуволны при заданном донорнрм числе. Потенциал полуволны оказывается тем более отрицательным, чем прочнее сольватная оболочка, т. е. чем больше донорное число Оц. В то же время в случае преобладания электрофильных свойств. растворителя можно ограничиться рассмотрением акцепторных чисел. Они особенно удобны для выявления различий сольвати-рующей способности растворителей при взаимодействии с анионами. Если же одновременно проявляются ДПЭ- и АПЭ-свой- ства растворителя, то необходимо привлекать оба числа — дозорное и акцепторное, так как наиболее полная характеристика координационной способности растворителя становится возможной лишь в рамках модели двух параметров. [c.448]

    Сущность работы. После растворения навески цинка в хлороводородной кислоте в присутствии бромата калия кадмий определяют полярофафическим методом на фоне аммиачного раствора хлорида аммония. Потенциал полуволны d на этом фоне 1/2 = -0,85 В (н.к.э.). Цинк не мешает определению. В условиях опыта /2(Zn2+) = -1,45 В. Медь не мешает, если ее содержание не превышает 10-кратного избытка по отношению к кадмию. [c.274]

    Если окислительно-восстановительный потенциал Ен экспериментально не определен, то для данных условий его можно вычислить по формуле Нериста, используя значения pH воды и коэффициент насыщения ее растворенным кислородом. [c.114]

    Растворение металла по химическому механизму необходимо учитывать не только при разложении амальгам щелочных и щелочноземельных металлов. Растворение железа, хрома и хромистых сталей, марганца в кислых растворах частично протекает по химическому механизму, особенно при повышенных температурах (Я. М. Колотыр-кин и сотр.). Необходимым условием химического механизма является хемосорбция окислительного компонента раствора, при которой в определенных условиях реакция растворения металла может происходить и без освобождения электронов непосредственно в одном акте с реакцией восстановления. При растворении металла по химическому механизму можно в первом приближении ожидать отсутствия зависимости между скоростью растворения и потенциалом. Кроме того, важным признаком химического механизма является несоответствие между скоростью растворения и величиной анодного тока, пропускаемого через электрод скорость растворения, найденная, например, аналитическим методом, оказывается больше,чем соответствующая пропускаемому току. На рис. 186 показаны поляризационные кривые, измеренные на стали в растворе серной кислоты, и полученная аналитически зависимость скорости растворения той же стали от потенциала. Скорость растворения стали значительно превосходит ожидаемую из величин анодного тока и не зависит от потенциала. Это указывает на химический механизм растворения хромистой стали в серной кислоте при повышенных температурах. [c.353]

Рис. 186. Катодная (7) и анодная (2) поляризационные кривые, измеренные в 0,1 н. Н2504при90° настали 1X13, и зависимость определенной аналитически скорости растворения той же стали от потенциала (3) Рис. 186. Катодная (7) и анодная (2) <a href="/info/10700">поляризационные кривые</a>, измеренные в 0,1 н. Н2504при90° настали 1X13, и <a href="/info/1392137">зависимость определенной</a> <a href="/info/581593">аналитически скорости</a> растворения той же стали от потенциала (3)

Смотреть страницы где упоминается термин Растворения потенциал, определени: [c.165]    [c.184]    [c.22]    [c.224]    [c.153]    [c.45]    [c.18]    [c.42]    [c.96]    [c.39]    [c.38]    [c.281]    [c.105]    [c.119]    [c.447]    [c.153]    [c.213]   
Введение в электрохимию (1951) -- [ c.564 ]




ПОИСК





Смотрите так же термины и статьи:

Определение разности химических потенциалов при растворении полимеров

Потенциал определение

Потенциал растворения



© 2025 chem21.info Реклама на сайте