Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разделение компонентов хроматографией

    Адсорбция лежит в основе метода разделения компонентов смесей, называемого хроматографией. Хроматографическое разделение происходит при движении подвижной фазы (раствор, газовая смесь) относительно другой неподвижной фазы (обычно адсорбент или инертный носитель, пропитанный жидкостью) вследствие различного сродства разделяемых веществ с фазами. [c.40]


    Методом бумажной хроматографии удается достичь хорошего разделения компонентов и определить их с достаточной степенью точности. Однако недостатком метода является большая длительность анализа, поэтому использование метода целесообразно в исследовательских лабораториях. Тонкослойная хроматография. Сообщения об использовании метода тонкослойной хроматографии для определения примесей в дифенилолпропане менее многочисленны. [c.188]

    Так как для разных по геометрической или электронной структуре молекул значения констант Генри, по крайней мере при подходящей температуре, обязательно различаются (поскольку они связаны с энергией молекулярного взаимодействия, разной для разных молекул, см. стр. 487 сл.), то теория равновесной хроматографии в области изотермы распределения Генри приводит к выводу об обязательном газо-хроматографическом разделении любых компонентов. В действительности этому мешают, во-первых, как мы уже видели, отклонения изотермы распределения (адсорбции, растворения) от изотермы Генри и, во-вторых, как мы увидим в дальнейшем, диффузионные и кинетические факторы. Эти причины приводят к асимметричному искажению и размыванию хроматографической полосы, что ведет к наложению полос близких по свойствам веществ друг на друга и поэтому мешает четкому разделению компонентов. [c.557]

    Огромное значение в химической технологии имеют адсорбенты и катализаторы, которые представляют собой дисперсные системы с твердой дисперсионной средой. Адсорбция имеет самостоятельное значение для очистки и разделения веществ, извлечения ценных компонентов, хроматографии и др. [c.15]

    Подобным образом проводится количественная оценка эффективности разделения компонентов смесей в тонкослойной хроматографии, которая отличается от хроматографии на бумаге тем, что выполняется на тонких слоях различных адсорбентов, наносимых обычно на стеклянные пластинки. [c.183]

    Хроматографы. Действие хроматографов основано на предварительном разделении компонентов, составляющих анализируемую смесь, и последующем выделении каждого компонента. Выходной электрический импульс передается на электронный автоматический прибор, записывающий хроматограмму, состоящую из ряда пиков, каждый из которых соответствует определенному компоненту анализируемой смеси. Площадь каждого пика пропорциональна процентному содержанию компонентов смеси. [c.92]

    Большую помощь при изучении химического состава парафинов оказывает адсорбционное разделение (вытеснительная хроматография). Образец вводят в верхнюю часть колонки, заполненной активированной окисью алюминия (или алюмогелем), затем его обрабатывают растворителями с постепенно повышающейся полярностью. При этом из колонны выделяются компоненты также с постепенно повышающейся полярностью. При вытеснительной хроматографии разделения по молекулярному весу не происходит, вначале выделяются все насыщенные углеводороды, затем непредельные (если они имеются в смеси) и, наконец, ароматические углеводороды и полярные соединения. [c.33]


    Распределительная хроматография на бумаге или ка колонках. По хроматографическому анализу углеводов существуют обширные исследования [25, 32, 33, 37]. Разработано несколько приемов разделения (хроматография нисходящая, восходящая, радиальная и др.). Предложено большое количество растворителей и приемов хроматографирования. Четкое разделение компонентов хроматографией на бумаге зависит от применяемой системы растворителей, марки бумаги, времени разделения, температурных условий и природы углеводного состава гидролизатов. Поэтому правильный выбор условий хроматографирования в каждом отдельном случае решает успех наилучшего разделения компонентов. [c.70]

    Наряду с выделением и разделением компонентов жидких систем (растворов) хроматографический анализ нашел успешное применение для разделения и выделения компонентов газовых смесей. Все это привело к весьма сильному расширению областей применения хроматографии. Хроматографические метолы стали использовать не только а аналитических целях (что долгое время являлось основной областью применения их), но и в препаративных целях — для выделения очень ценных составных частей сложных смесей и для тщательной очистки ценных материалов от небольших количеств содержащихся в них нежелательных примесей. [c.373]

    Масс-спектрометры, предназначенные в основном для анализа газов, представляют собой специализированные конструкции, обеспечивающие стабильность газового потока через прибор во время измерений, стабильность температуры системы напуска газа и источников ионов, минимальное остаточное давление в приборе и др. МС-газоанализаторы пригодны для анализа любых газовых смесей, вплоть до самых сложных, содержащих как легкие, так и тяжелые газы, для анализа ионных атмосфер, состава сильно разреженных газовых смесей и т. д. В ряде случаев масс-спектрометры целесообразно сочетаются с газовыми хроматографами, в которых происходит предварительное разделение компонентов, с инфракрасными спектрометрами и т. п. [c.604]

    Селективность неподвижной фазы. В газо-жидкостной хроматографии разделение смеси веществ достигается тем легче, чем больше различие в коэффициентах Генри компонентов разделяемой смеси для выбранной неподвижной фазы. Херингтон 10] вывел соотношение (76), позволяющее связать относительный удерживаемый объем со свойствами системы сорбат — сорбент. Согласно этому уравнению, разделение компонентов смеси может происходить вследствие различия у компонентов смеси либо упругости пара, либо коэффициентов активности. [c.61]

    Тонкослойная хроматография [20— 22]. Разделение проводят на стеклянных пластинках, равномерно покрытых слоем активированного твердого адсорбента. На нижнюю (стартовую) линию пластины наносят капли исследуемой смеси, после чего пластину под определенным углом погружают в ванну с десорбентом так, чтобы уровень его был ниже стартовой линии. При движении фронта растворителя происходит разделение компонентов смеси. Для идентифицирования образовавшихся пятен хроматограмму проявляют с помощью тех или иных реагентов или рассматривают пластину в ультрафиолетовых лучах. Затем измеряют площадь образовавшегося пятна и Л/. Обычно величина характерна для индивидуальных соединений или групп однотипных соединений. [c.83]

    Вымывание широко применяется также в ионообменной хроматографии. Как видно из приведенного выше описания, метод требует часто довольно много времени для разделения компонентов, однако затраты труда здесь невелики. Необходимо иметь также в виду широкие возможности автоматизации этого процесса. Промывая водой и измеряя электропроводность фильтрата, получают зависимость, аналогичную той, которая показана на рис. 10 (на оси абсцисс отложена электропроводность). Таким образом, контроль за ходом процесса может осуществляться на расстоянии, что особенно важно, например, при работе с радиоактивными веществами. Кроме того, прибор, отмечающий электропроводность, может передать сигнал на реле с тем, чтобы после извлечения первого компонента переключить поток жидкости во второй сосуд. [c.69]

    В газо-адсорбционной хроматографии разделение компонентов происходит за счет различия коэффициентов адсорбции на твердой поверхности адсорбента и, следовательно, селективность адсорбента определяется отношением этих коэффициентов или пропорциональных им объемов удерживания, а также и критерием селективности согласно уравнениям (IV.67) — (IV.69). [c.129]

    Влияние температуры. Степень разделения компонентов, а следовательно, и коэффициент селективности Кс возрастают с увеличением разности теплот адсорбции или растворения и разности энтропий адсорбции или растворения при постоянной температуре колонки. С увеличением температуры степень разделения уменьшается тем больше, чем выше теплота растворения или адсорбции. В том случае, когда теплоты близки или равны, разделение определяется лишь различием энтропий и не зависит от температуры. Этот случай наиболее благоприятен для хроматографии, так как, во-первых, близость теплот означает близость температур кипения, а значит, и возможность разделения близкокипящих соединений, а, во-вторых, это означает независимость степени разделения т от температуры и возможность ускорения процесса путем повышения температуры без ухудшения разделения. Возможные [c.129]


    В зависимости от преобладающего физико-химического сорбционного процесса, определяющего разделение компонентов смеси, различают хроматографию адсорбционную, ионообменную, осадочную и распределительную. Разделяемые компоненты могут находиться в недвижной жидкой или газовой фазе, а неподвижная фаза может быть как твердой, так и жидкой. Зерна адсорбента или ионита могут заполнять колонну (колоночная хроматография) или составлять тонкий плотный слой на стеклянной пластинке (тонкослойная хроматография). Жидкий адсорбент может наноситься на стенки узкой, длинной капиллярной трубки (капиллярная хроматография). [c.305]

    То же явление используют в распределительной хроматографии (А. Мартин, Г. Синдж, 1941 г.). В этом случае одна Жидкая фаза наносится на зерна твердого вещества с большой поверхностью (целлюлоза, силикагель и др.). помещенные в колонну. Разделяемая смесь вносится в верхнюю часть колонны. После этого колонна промывается вторым растворителем. Если коэффициенты распределения компонентов смеси различаются, то компоненты движутся по колонке с разными скоростями. Собирая выходящий раствор фракциями, можно при достаточной высоте колонны получить растворы, содержащие разделенные компоненты смеси. [c.144]

    Современная хроматография представляет собой физикохимическое разделение компонентов подвижной фазы при ее движении вдоль другой, неподвижной фазы (жидкость, твердое тело) за счет их различного распределения между фазами. [c.232]

    РАБОТА 91. РАЗДЕЛЕНИЕ КОМПОНЕНТОВ РАСТВОРА КРАСИТЕЛЕЙ БУМАЖНОЙ ХРОМАТОГРАФИЕЙ [c.259]

    В 40-х годах хроматографию стали применять для разделения компонентов газовых смесей на адсорбентах сначала фронтальным методом (пропуская через адсорбент газовую смесь постоянного состава и получая так называемые выходные кривые), а затем и элюционным методом (вводя газовую смесь в колонну и промывая ее потоком газа-носителя, в результате чего по-разному [c.8]

    Адсорбция из растворов нашла широкое применение для так называемого адсорбционного анализа (хроматографии). Анализ основан на разделении компонентов раствора благодаря их различ- [c.295]

    Распределительная хроматография. Сорбенты-носители — различные гидрофильные (силикагель, целлюлоза и др.) или гидрофобные (тефлон, поливинилхлорид, полиэтилен и др.) порошкообразные вещества, способные удерживать на своей поверхности соответственно водную или органическую фазу разделение компонентов смеси обусловлено различием коэффициентов распределения их между двумя жидкими фазами, из которых одна (вода или органическая, несмешивающаяся с водой, жидкость) является неподвижной, удерживаемой частицами сорбента-носи-теля. [c.8]

    Этот принцип разделения компонентов смесей молекулярно-дисперсных веществ и растворов электролитов лежит в основе хроматографии по методу фронтального анализа. [c.23]

    Несмотря на большое сходство в технике эксперимента при разделении компонентов смесей, между ионообменной и адсорбционной хроматографией имеется существенное различие. Первая основана на законах стехиометрии, приложимых к реакциям ионного обмена. Вторая — основана на молекулярной адсорбции, которая обычно подчиняется закономерностям, выражаемым изотермами адсорбции Лэнгмюра или Фрейндлиха. Поэтому в молекулярной хроматографии отдельные вещества могут десорбироваться и элюироваться (вымываться) чистым растворителем, тогда как в случае ионообменной хроматографии в качестве элюента необходим раствор электролита. [c.119]

    В институте геохимии и аналитической химии им. В. И. Вернадского АН СССР проведен микрохимический анализ магнитной фракции космической пыли (масса 3— 10 мкг) с удачным использованием метода тонкослойной хроматографии для разделения компонентов и денситометрии для их количественного определения. Сорбентом служил очищенный надлежащим образом силикагель марки КСК в качестве подвижного растворителя использовали перегнанный ацетон или смесь 99 мл ацетона и 1 лсл 3 н. НС1. Средняя относительная ошибка при надежности 0,95 составляет для железа +22, никеля +15, кобальта +9%. Авторы этого исследования [1451 считают, что простота метода, быстрота выполнения, четкость разделения дают возможность рекомендовать его для проведения серийных анализов при изучении состава космической пыли. [c.187]

    При газосорбционной хроматографии колонка заполнена твердым адсорбентом и разделение основано на различии адсорбционных свойств компонентов смеси. При газожидкостной хроматографии колонка заполняется инертным твердым веществом, носителем , на который наносится слой жидкости, играющей ту же роль, что и твердый адсорбент, разделение компонентов с меси достигается благодаря их различной растворимости в соответствующем жидком растворителе. Компоненты распределяются по зонам и разделяются нри промывании колонки каким-либо инертным газом. Как и в первом случае, из колонки будут выходить отдельные компоненты в виде бинарных смесей углеводород — инертный газ. [c.251]

    При изучении реакции алкилирования ацетиленом и его гомологами ароматических соединений, в частности фенолов , синтезированные дифенолы анализировали с помощью хроматографии в тонком слое окиси алюминия. Матовую стеклянную пластинку покрывали товарной хроматографической окисью алюминия в сухом виде (слой толщиной 0,5 мм, без применения фиксирующих средств). Дифенолы лучше всего разделялись элюэнтом, представляющим собой раствор этанола в бензоле в отношении 1 15. Хроматогргмму проявляли, используя пары иода. Для количественного определения компонентов был опробован метод измерения и сравнения площадей их пятен. Оказалось, что при хорошем разделении компонентов и при резких границах пятен этот метод расчета дает достаточно точные данные. Ошибка определения менее 6%. Этим методом были разделены дифенолы и их орто-пара-замещенные изомеры. Необходимо отметить, что в этой работе количество определяемого компонента было 10% и выше, поэтому о возможности применения метода для анализа микроколичеств судить трудно. [c.188]

    Кроме таких аналитических применений разделения компонентов смесей на основе различной их адсорбции или различ ной растворимости, газовая хроматография, очевидно, может быть применена и для решения обратной задачи, т. е. для быстрого определения адсорбции и теплоты адсорбции, величины по-. ерхности твердого тела и ее химических свойств или для опре-1еления термсдинамических свойств раствора в неподвижной жидкости и связанных с этими свойствами физико-химических величин (констант равновесия, изотерм распределения, коэффи циентов активности, тепловых эффектов и т. п.). [c.546]

    На установке применяется хроматограф ХПА-4 для автоматического непрерывного определения и регистрации химического состава газовых потоков. Принцип действия хроматографа основан на физическом разделении газовой смеси на составляющие компоненты, при котором компоненты распределяются между двумя фазами подвижной и неподвижной. Разделение компонентов происходит за счет различной поглощаемости или неодинакового растворения компонентов газовой смеси, проходящей через слой неподвижного сорбента. В результате скорость движения газов меняется в соответствии со степенью поглощения каждого газа. Чем больше сорбируе-мость газа, тем больше торможение и меньше его скорость движения. С течением времени в силу различия в скоростях газы отделяются друг от друга. Проба продувается через слой сорбента при помощи газа-носителя. При постоянном расходе газа-носителя и постоянной температуре время выхода из хроматографической колонки компонента всегда постоянно, поэтому может быть установлена определенная очередность выхода компонентов, являющаяся качественным показателем при хроматографическом анализе. [c.92]

    Поглощение кислорода раствором пирогаллола А из газа, предварительно освобожденного от кислотных компонентов определение количества поглощенного кислорода Определение производится на газоанализаторе типа ГХЛ определяются сумма кислотных газов (СО,, 50о, НгЗидр.) сумма непредельных углеводородов О2 СО Нз сумма предельных углеводородов и На Хроматографическое разделение компонентов природного газа сочетанием парожидкостной и газо-адсор бционной хроматографии и газохроматографического детектирования разделенных компонентов смеси определяется содержание Н,, Не, N2, О,, СО,, СН , СзНв, зНв, изо-С Нщ, Н-С4НЮ, 30-СдН 2> [c.60]

    Разделение компонентов может осуш,ествляться в колонках насадочного типа (колоночная хроматография), капиллярах, заполненных неподвижной жидкой фазой (капиллярная хроматография), на фильтровальной бумаге (бумажная хроматография), на тонком слое сорбента, нанесенном на стеклянную пластинку (тонкослойная хроматография). Разделение гмесей может проводиться при [c.82]

    Гель-хроматография является еще одним вариантом жидкостной хроматографии, в котором разделение компонентов осуществляется в соответствии с размером их молекул. Во всех хроматографических методах разделения вещества, особенно относящиеся к одному гомологическому эяду, элюируют в порядке возрастания молекулярной массы. При гель-хроматографии порядок выхода обратный небольшие молекулы попадают в сетку ге-.ля и удерживаются в ней, в то время как большие молекулы не могут проникнуть в полимерную сетку и вымываются из колонки первыми. [c.91]

    Выше отмечалось, что основная часть содержащейся в нефти серы (70—90%) сконцентрирована в высокомолекулярной ее части. Поэтому особый интерес представляет изучение закономерностей распределения ее среди различных групп высокомолекулярных соединений нефти. Эти закономерности детально изучались в руководимой автором лаборатории высокомолекулярных соединений нефти Института нефти Академии наук СССР. Чтобы избежать разложения высокомолекулярных гетероорганических соединений нефти при разделении ее на основные компоненты, применялось нагревание (в вакууме при температуре не выше 215° С). Основным методом разделения являлись хроматография на активированнол крупнопористом силикагеле и молекулярная перегонка (вакуум 1 мм рт. ст., температура в конце перегонки 215 С). Наиболее подробно была исследована высокомолекулярная часть ромашкинской (девонской) [c.335]

    Существует много разновидностей хроматографического метода. Для разделения компонентов нефти применяется в основном жидкостная адсорбционная хроматография. По этому методу разделение жидких смесей на фракции ведется в колонках, заполненных адсорбентом, чаще всего силикагелем. Исследуемую жидкость вводят в колонку. Вязкие продукты предварительно растворяют в пентане или другом растворителе. Для ускорения прохождения по колонке пробы и десорбентов применяют давление инертного газа. В процессе адсорбции выделяется тепло. Под влиянием этого тепла и каталитического воздействия самого адсорбента возможно развитие таких химических реакций с aд opбиJ oвaнны-ми веществами, как окисление и полимеризация. Во избежание этого колонку следует охлаждать. [c.58]

    В осадочной хроматографии компоненты разделяемой смеси в результате химического взаимодействия с осадителем, содержащимся в твердой фазе, образуют труднорастворимые осадки. Разделение компонентов смеси основывается на разли ти в произведениях активностей этих осадков. Анализируемые вг-шсства должны при этом находиться в растворе. [c.12]

    Используемый в работе газовый хроматограф ЛХМ-8МД состоит из четырех блоков блока подготовки газов, термоста- тированного блока колонок, блока измерения и термостатирования и блока регистрирующего устройства. Разделение компонентов смеси происходит в хроматографической колонке. Прибор снабжен двумя колонками одна рабочая, в ней происходит разделение, вторая — колонка сравнения. Хроматографические колонки заполнены твердым носителем, на который нанесена неподвижная жидкая фаза. В качестве газа-носителя используют азот (или гелий). [c.355]

    Наиболее рациональная классификация современных видов хроматографического метода разделения компонентов гомогенных смесей учитывает природу взаимодействия разделяемых веществ и материала колонки. По этому признаку различают а) молекулярную хроматографию и б) хе-мосорбционную хроматографию. Молекулярная хроматография, в свою очередь, подразделяется на адсорбционную (этот метод описан М. С. Цветом) и абсорбционную моле- [c.7]

    Тонкослойная хроматография. В последнее время широкое применение получила хроматография в тонких слоях сорбента (тонкослойная хроматография). Различие в гидродинамическом режиме процесса тонкослойной хроматографии по сравнению с колоночной и бумажной хроматографией приводит к значительному уменыле-нию размывания зон отдельных компонентов разделяемой смеси, что обусловливает значительно большую эффективность разделения. Тонкослойная хроматография позволяет довольно быстро разделять очень малые количества вещества, причем для этого требуется значительно меньшая длина слоя сорбента, чем в колоночном варианте. [c.51]

    Если неподвижная фаза — жидкость, нанесенная на поверхность инертного носителя, то говорят о распределительной хроматографии. Хроматография в газовой фазе, особенно вариант газо-жидкостной распределительной хроматографии, благодаря своей эффективности получила широкое применение в анализе сложных смесей газов и паров. Газо-жидкостная распределительная хроматография обладает рядом преимуществ перед газо-адсорбционной хроматографией. В случае газо-жидкостной хроматографии получают узкие, почти симметричные прояйительные полосы (пики), что способствует лучшему разделению компонентов и сокращению времени анализа. Это можно наблюдать на примере разделения углеводородов. Если методом адсорбционной хроматографии разделяют главным образом низкокипящие газообразные соединения, то с помощью газовой распределительной хроматографии можно анализировать почти все вещества, обладающие хотя бы незначительной летучестью, подобрав соответствующую неподвижную жидкую фазу и условия разделения. [c.98]

    Хроматография без газа-носителя . Непосредственное разделение компонентов смеси в отсутствие газа-носителя создает ряд преимуществ по сравнению с проявительным способом, где анализируемая проба разбавляется газом-носителем, а затем размывается в колонке, что осложняет определение микропримесей. При помощи этого метода удается решать задачи концентрирования в изотермическом режиме, определения количественного состава смеси по характеристикам удерживания, повышения точности анализа и определения физико-химических характеристик концентрированных растворов. Хроматография без газа-носителя позволяет коренным способом упростить хроматографическую аппаратуру, фактически устранить ошибки, связанные с дозированием. [c.21]

    Связь между значениями Гг для разных компонентов будет рассмотрена позже (в лекции 15), так как это требует введения определенных модельных представлений, выходяших за рамки термодинамики Гиббса. Здесь лишь отметим, что при Г <0, т. е. при недостатке компонента I вблизи поверхности, формула (14.10) дает К(,1<0 (индексы Г, с здесь и далее отброшены) в соответствии с отрицательным наклоном изотермы адсорбции компонента С при Гг = 0. Это отражает преобладание межмолекулярного взаимодействия молекул г с молекулами раствора по сравнению с их взаимодействием с адсорбентом. В жидкостной хроматографии практический интерес представляет разделение компонентов, для которых Гг>0 и /С , 1>0. [c.253]

    Если разделение компонентов смеси происходит только по распределительному механизму, то, строго говоря, нельзя ожидать полного совпадения между величинами нерн-стовских коэффициентов распределения (а), найденными для той же пары растворителей в статических условиях, когда растворители находятся в свободном состоянии, и расчетным путем, после экспериментального определения R (для колоночной хроматографии) или Rf (для бумажной или тонкослойной хроматографии). Совпадения не может быть из-за сольватации носителя, так как частично связанный носителем неподвижный растворитель обладает меньшей растворяющей способностью. На это важное об- [c.169]

    Если необходимо четкое разделение всех зон на бумаге или в тонком слое сорбента-носителя, то после получения первичной хроматограммы ее промывают водой или слабыми водными растворами минеральных солей иногда промывают и органическими растворителями. При промывании первичной осадочной хроматограммы органическими растворителями разделение компонентов смеси на импрег-нированной бумаге часто обусловлено экстракционным механизмом. Возможно, что эти случаи правильнее причислить к распределительной, а не к осадочной хроматографии. [c.194]


Смотреть страницы где упоминается термин Разделение компонентов хроматографией: [c.543]    [c.176]    [c.177]    [c.320]    [c.305]    [c.138]   
Теоретические основы аналитической химии 1980 (1980) -- [ c.251 ]




ПОИСК





Смотрите так же термины и статьи:

Газожидкостная хроматография. Разделение и определение компонентов смеси жидких хлорметанов

Разделение компонентов

Разделение компонентов раствора красителей бумажной хроматографией

Разделение компонентов элюата газовой хроматографии

Разделение липидов на составляющие компоненты и определение группового состава фосфатидов методом тонкослойной хроматографии

Хроматография разделение



© 2025 chem21.info Реклама на сайте