Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бутадиен хлористого алюминия

    Объем производства полистирола составляет 18% мирового производства пластмасс. В 1964 г. было получено 1295 тыс. т полистирола и его сополимеров. Таким образом, полистирол после полиолефинов является одним из наиболее распространенных видов пластмасс на основе углеводородных мономеров. Исходный мономер стирол получается дегидрированием этилбензола, а этилбензол алкилированием бензола этиленом в присутствии хлористого алюминия. О масштабах производства стирола можно составить представление по такому примеру. В США в 1963 г. было получено 865 тыс. г стирола, из которого 60—65% было израсходовано на пластмассу полистирол и полистирольные смолы, а 35% на производство бутадиен-стирольного каучука. Там же на производство стирола было израсходовано 40% всей продукции бензола (492 тыс. л ), а в 1968 г. ожидается использовать для этого более 800 тыс. м бензола. [c.123]


    Использование свободных металлов в качестве восстановительных агентов для получения соединений титана и циркония рекомендуют при приготовлении ряда каталитических систем, причем компоненты нагревают при повышенных температурах (например, 200—300°) с целью получения активных продуктов, т. е. продуктов, способных, по всей вероятности, образовывать комплексы с олефинами и инициировать полимеризацию при обычной температуре. Так, галогениды или алкоголяты титана и циркония нагревают с металлическими натрием, алюминием и даже титаном [215] п получают катализаторы для полимеризации этилена. При нагревании металлического титана с хлористым алюминием также образуется эффективный катализатор. Добавление кислорода или органических и неорганических перекисей дает возможность получить активный катализатор из титана и галогенида алю.миния в более мягких условиях [238]. Кроме этилена в присутствии каталитической системы, состоящей из галогенидов алюминия и титана, полимеризуются так ке пропилен, бутадиен и изопрен [239]. [c.114]

    Стереоспецифические катализаторы. Используя катализаторы на основе алкилов алюминия и четыреххлористого титана (такие стереоспецифические катализаторы рассматриваются в гл. 9) можно получить блок-сополимеры в две стадии. Один из мономеров полимери-зуют в среде инертного растворителя с образованием растворимого полимера с активным концом цепи. При последующем добавлении второго мономера происходит блок-сополимеризация. В качестве первого мономера можно использовать пентен-1, октен-1, циклогексен, бутадиен и изопрен бромистый и хлористый аллилы, хлористый металлил, изопрен, бутадиен, стирол, бутен-1, октен-1 и хлоропрен могут быть вторыми компонентами таких реакций [37]. [c.92]

    Окись этилена применяется в качестве алкилирующего средства в реакции Фриделя—Крафтса. При этом бензол, толуол, анизол и т. д. превращаются в р-арилэтиловые спирты [226] в более жестких условиях образуются диа-рилэтаны [226, 227]. По патентным данным [228], из этилена и окиси этилена действием хлористого алюминия на боксите получается бутадиен. [c.32]

    Циклоолигомеризация бутадиена-1,3 проходит также с использованием ряда других каталитических систем. При введении бу-тадиена-1,3 в суспензию триэтилалюминия и хромилхлорида в бензоле при энергичном перемешивании и температуре 40 °С получена смесь изомеров циклододекатриена-1,5,9 (40% транс, транс,цис- и 60% транс,транс,транс-) с выходом около 90%. Первый изомер имеет температуру плавления —18 °С, а второй — 34°С [4]. Пропуская бутадиен-1,3 при 40 °С и нормальном давлении через суспензию алюминийгидрида, хлористого алюминия и четь1реххлористого титана в бензоле, получают 90—95% циклододекатриена-1,5,9. [c.205]


    Винилхлорид может реагировать с хлористым водородом в присутствии хлористого алюминия с образованием этилвденхлорида (1,1-дихлор0тана) Если вивилгалоид, винил-оксид или сульфид пропускать над такими тяжелыми металлами, как железо, медь, свинец, олово, висмут, сурьма, кадмий или цинк, при температуре ниже 400°, то, как сообщалось, получается 1,3-бутадиен [c.743]

    Хинонсульфонимиды вступают с большой легкостью в реакции, аналогичные приведенным выше для хинонов, например в реакции 1,4-присоединения галоидоводородов, ароматических углеводородов (под каталитическим действием хлористого алюминия), в реакции диенового синтеза с бутадиеном и его гомологами и т.д. [c.506]

    Применение комплексных галоидалюминийорганических соединений в электрофильном катализе. В большинстве промышленных электрофильных процессов (синтез полиизобутилена, бутил-каучука, алкилирование бензола этиленом и пропиленом) в качестве катализатора используется хлористый алюминий [1—5, 8—10]. Несмотря на универсальность и выдающиеся каталитические свойства, его применение не решает ряда актуальных задач электрофильного синтеза. К их числу относится получение полимеров изобутилена из промышленной фракции углеводородов С4 . Фракция С4 служит основной сырьевой базой изобутилеиа и кроме последнего содержит изомеры бутана и бутенов, бутадиен, небольшие количества Сг-, Сз- и Сб-углеводородов, соотношение между которыми меняется в зависимости от условий получения фракции [2]. На полимеризацию изобутилеиа (содержание во фракции 10—50%) другие компоненты фракции, например, бутилепы, оказывают заметное ингибирующее действие [9, 10, 59]. Особенно сильно оно выражено у бутадиена, соединений серы, аммиака и др., почему целесообразно их удаление из фракции 10, 59]. Полимеризация изобутилеиа из фракции С4 приводит к получению низкомолекулярных полиизобути-ленов или продуктов смешанной полимеризации ненасыщенных углеводородов 160—62]. Используемый катализатор (А1С1з в хлорэтиле или толуоле) отличает высокая чувствительность к составу сырья, затрудняющая регулирование молекулярной массы продукта остающаяся после неполного извлечения изобутилена фракция сжигается, вызывая загрязнение атмосферы [59]. [c.11]

    Катализатором в реакции И. И. Штеттера являются хлористый алюминий или смеси его с хлоридами ртути, меди, магния, цинка, никеля, железа и др. В присутствии этих катализаторов в реакцию с Si U вступают этилен, пропилен, бутадиен, ацетилен, винилаце-тклен, окись углерода и др. [c.117]

    Вещества, известные- в настоящее время как инициаторы катионной полимеризации, одними из первых были использованы для полимеризации углеводородов с несколькими двойными связями. В XIX в. Буршада и Тильден для полимеризации изопрена применяли хлористый водород. Полимеризация изопрена под действием хлористого алюминия была описана Ашаном в 1915 г. Можно найти много других ссылок на полимеризацию изопрена, бутадиена и других мономеров под действием катионных катализаторов [1]. Однако в большинстве случаев ранние работы были лишь качественными и малопригодными для установления механизма реакции. Даже теперь встречается мало исследований, на основании которых можно сделать выводы о природе инициирующих частиц или о механизме соответствующих реакций. Явная невоспроизводимость скоростей реакций, о которой сообщают, обусловлена несомненно наличием примесей в реагентах. Конечно, встречаются трудности при очистке н осушке таких активных мономеров, как бутадиен и изопрен, до требуемой высокой степени чистоты. Тем не менее при наличии современных методов, например препаративной газовой хроматографии, проблема очистки не является непреодолимой. [c.299]

    Изопрен полимеризуется в присутствии катионных катализаторов легче, чем бутадиен, однако в поведении обоих мономеров наблюдается много общего. Так, чистый изопрен под действием хлористого алюминия полимеризуется с трудом [9], тогда как в хлорированных растворителях полимеризация происходит быстро. Подобным же образом с хлорным оловом в качестве катализатора чистый изопрен полимеризуется только при температурах выше 0°, в то время как в хлористом этиле быстрая полимеризация происходит при —80° [10]. В отличие от этого бутадиен в хлористом этиле может быть заполимеризован с этим катализатором только при значительно более высоких температурах (около 20°) [11]. Активность хлористого алюминия сильно возрастает, если он присутствует в виде растворимого комплекса. В качестве комплексообразующих реагентов использовались пентен-2, триметилэтилен, нитробензол и этилацетат [12] эти соединения вызывают увеличение концентрации инициатора и могут действовать как сокатализаторы. Считают, что первый из них участвует в полимеризации, увеличивая количество действующего катализатора, что приводит к увеличению скорости полимеризации и уменьшению молекулярного веса. Однако нет веского доказательства того, что олефин не сополимеризуется с изопреном, хотя он определенно сополимеризуется с пропиленом [13] и, вероятно, с триметилэтиленом [14] влияние этих соединений следовало бы исследовать заново. Было найдено, что алкилалюмннийгалогеннды полимеризуют изопрен [15] (а также бутадиен и диметилбутадиен) только в присутствии хлористого водорода или воды в качестве сокатализаторов. Действие алкил-алюмннийгалогенидов, по-видимому, в качестве катионных катализаторов представляет интерес, так как они могут также действовать как анионные инициаторы путем реакции по связи алюминий — углерод (см. гл. 3, разд. VI). [c.301]


    Экспериментальные трудности были четко отмечены Марвелом и сотр. [45], которые изучали сополимеризацию бутадиена и стирола при — 75° в бромистом этиле с хлористым алюминием в качестве катализатора. Они нашли, что воспроизводимые результаты можно получить только в безводной среде. Осушка повышает также общий выход полимера. Физические свойства сополимера зависят от концентрации катализатора, времени реакции, а также от применения н-гексана в качестве разбавителя. В бромистом -бутиле реакция протекает так же, как в бромистом этиле. В бромистом изопропиле для получения той же степени превращения и того же типа сополимера требуется более высокая концентрация катализатора. Применение в качестве растворителя бромистого трет-шяла приводит к образованию растворимой вязкой жидкости, вероятно вследствие преобладания передачи с участием этого соединения. Некоторые осложнения при реакции и зависимость свойств сополимера от условий реакции можно объяснить образованием поперечных связей и другими реакциями с сопряженным диеном. Во всех опытах стирол был более активным, чем бутадиен. [c.477]

    Бутадиен как полученный и.з его тетрабромида реакцией цинковой пыли в присутствии водного спирта, так и приготовленный нами разложением эритрита муравьиной кислотой, не полимеризуется так легко хлористым алюминием, как изопрен и 2,3-диметилбутадиен. Процесс останавливается спустя несколько времени после начала полимеризации и не идет дальше. Это обстоятельство тем более обращает на себя внимание, что технический бутадиен-1,3, содержащий от 20 до 50% посторонних углеводородов (главным образом псевдобутилен), получающийся из этилового спирта, а также пирогенетическим разлоя ением нефти и ее про-дукто.в, легко и быстро уплотняется под влиянием хлористого алюминия. Почему чистый бутадиен пассивно относится к полимеризации, а в смеси его с другими углеводородами он легко и быстро уплотняется, это предстоит еще выяснить. И с технической точки зрения это было бы выгодно, так как позволяло бы далеко не идивидуальный бутадиен подвергать полимеризации. Пока, однако, мы убедились в том, что полимеры, возникающие через контакт с хлористым алюминием, представляют продукты более глубоко выраженной полимеризации. Но тем не мепее полимеризую-щее действие хлористого алюминия на диеновые углеводороды заставляет обратить внимание на этот процесс, и надо найти только условия, которые тормозили бы слишком энергично идущее уплотнение и остановили бы его на той стадии, которая отвечала бы степени полимеризации естественного каучука. [c.249]

    Способ получения бутадиена, предложенный Перкином, заключается в хлорировании хлористого н-бутила и каталитическом отщеплении НС от образующейся смеси a -, а - и ао-дихлорбутанов. По Лебедеву, бутадиен получается с 30%-ным выходом при пропускан1ш паров этилового спирта над нагретыми дегидратирующими катализаторами (гидросиликатамп, окислами алюминия и т. д.)  [c.73]

    Отщепление галоидоводорода от дигалоидопроизводных бутана в производственных процессах облегчается присутствием водяного пара или хлоридов различных металлов. Пары 2,3-дибромбутана превращаются в бутадиен в присутствии хлористого бария при 340—360 или в присутствии извести при 430—450° [27]. Расплавленные хлориды металлов (хлориды цинка, алюминия, калия, натрия, железа и висмута) отщепляют галоидоводород от дихлорбутана при 400 —600° [28]. Видоизменением этого метода является, одновременное пропускание паров к-бутана и хлора через расплавленные хлориды металлов при 175—300°, причем сразу получается бутадиен [5]. Водяной пар и фосфорная кислота или разбавленная соляная кислота вызывают отщепление галоидоводорода от дихлорбутана при 500—650° и нормальном давлении [29, 30]. [c.35]

    С мономерами. К полимеризующимся мономерам относятся этилен, большинство более высокомолекулярных олефинов, включая стирол и сопряженные диены. Некоторые катализаторы могут привести к образованию из а-олефинов полимеров с высокой структурной регулярностью, особенно в случае использования вместе с тризтил-алюминием тригалогенидов титана, ванадия, хрома или циркония. С другой стороны, линейные кристаллические полимеры бутадиена со структурой 1,2 и изопрена с 3,4-структурой получаются лучше всего при применении кислородсодержащих солей тех же металлов. Галогениды приводят к продуктам 1,4-присоединения к бутадиену. Отношение количества катализатора к сокатализатору и размер частиц также влияют на кристалличность — очень мелкие частицы дают больше аморфных полимеров. Оптимальные условия могут меняться от комнатной температуры и атмосферного давления, обычно для углеводородного растворителя с хлористым титаном и триэтилалюминием в качестве катализатора, до температур 200 и соответственно высоких давлений. [c.437]


Смотреть страницы где упоминается термин Бутадиен хлористого алюминия: [c.262]    [c.93]    [c.265]    [c.220]    [c.262]    [c.220]    [c.494]    [c.380]    [c.718]    [c.281]   
Методы высокомолекулярной органической химии Т 1 Общие методы синтеза высокомолекулярных соединений (1953) -- [ c.151 ]




ПОИСК





Смотрите так же термины и статьи:

Хлористый алюминий как катализатор бутадиена

Циклопентан бутадиен с хлористым алюминием



© 2024 chem21.info Реклама на сайте