Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бутены, изо и изомеры

    Нарисуйте формулы обоих изомеров бутана, в которых электроны изображаются точками. Напишите структурные формулы обоих бутанов. [c.191]

    Изомеризация парафиновых углеводородов— равновесная реакция [9]. Равновесные относительные количества отдельных изомеров при изомеризации н-бутана, н-пентана и н-гексана были рассчитаны по термодинамическим данным и определены экспериментально [Ю]. [c.514]


Рис. 6. Молярные проценты изомеров бутена в равновесной смеси [32] Рис. 6. <a href="/info/684089">Молярные проценты</a> изомеров бутена в равновесной смеси [32]
    Дегидрирование бутанов обычно производится последовательно. Сначала дегидрируется я-бутан с образованием к-бутенов (1- и 2-бутены), которые затем отделяются от к-бутана посредством экстракцимпюй перогонки, Второй ступенью является дегидрирование очищенных и-бутенов до 1,3-бутадиена. Концентрат, содержащий углеводороды С4, полученный при каталитическом дегидрировании и-бутана, в основном состоит из смеси 1-бутена, н-бутана и 2-бутенов, По значениям относительной летучести и минимальному числу теоретических тарелок, приведенным в табл. 13,. видно, что наиболее сложным является разделение н-бутана и низкокипящего изомера 2-бутена, Из приведенной в табл. 14 величины требуемого числа теоретических тарелок видно, что практически трудно произвести полное разделение этой смеси. Однако, используя комбинацию фракционной и экстракционной перегонок в присутствии растворителя, такое разделение возможно, В табл. 15 приведены значения летучести углеводородов С4 относительно 1,3-бутадиена в присутствии фурфурола, содержащего 4% воды. Путем фракционной перегонки на аппаратуре с большой разделительной способностью можно отделить 1-бутен от н-бутана и 2-бутенов, Затем к-бутан можно отделить от 2-бутенов посредством экстракционной перегонки. [c.111]

    В случае пропана и н-бутана мононитрозамещенные образуются практически в таком же отношении, в каком и изомерные хлорпроиэ-водные при хлорировании этих парафинов. Процессы нитрования изобутана и пентанов протекают запутаннее, так как относительно высокие температуры способствуют появлению побочных реакций. В результате хотя и образуются все теоретически возможные изомеры нитропарафинов, но не Б тех соотношениях, как при галоидировании. [c.561]

    Степень снижения энергетических затрат от применения многопоточных вводов питания увеличивается с уменьшением содержания дистиллятных компонентов в сырье и четкости разделения и увеличения относительной летучести компонентов [10]. В связи с этим раздельная подача сырья при частичном отбензинивании нефти позволяет получать большой выигрыш энергии, в то время как ввод сырья двумя потоками при разделении изомеров бутана, например, оказывается малоэффективным. Следовательно, эффективность применения схем с несколькими сырьевыми потоками, различающимися темиературами и составами, определяется соотношением расходов сырьевых потоков, фракционным составом сырья и требованиями к качеству продуктов разделения. Применение колонн с несколькими сырьевыми потоками может быть оправдано также и некоторыми другими соображениями, а имен- [c.107]


    Кинетика реакций окислительного дегидрирования бутенов изучена проточно-циркуляционным методом [16, 20, 27]. Скорости суммарного превращения бутенов и глубокого окисления бутенов и бутадиена пропорциональны парциальным давлениям исходных углеводородов и не зависят от парциального давления кислорода при его концентрациях выше 3% (мол.). При концентрациях выше 10% (мол.) водяной пар не оказывает влияния на скорость процесса. Положение двойной связи в молекуле бутена оказывает существенное влияние на скорость окислительного дегидрирования. По реакционной способности изомеры н-бутенов располагаются в ряд  [c.687]

    При отщеплении НВг от 2-бромбутана при помощи едкой щелочи количества полученных изомеров 2-бутсна и 1-бутена относятся как 81 19 [63]. В подобных же условиях превращение 2-бромпентана также следует правилу Зайцева, хотя и в меньшей степени, несмотря на увс- [c.419]

    Для получения упомянутых жирных кислот пригодны только первичные нитропарафины, вторичные же нитропроизводные при воздействии серной кислоты в условиях процесса осмоляются. Ввиду того, что при газофазном нитровании пропана и н-бутана наряду с первичными образуются также значительные количества вторичных нитросоединений, необходимо оба изомера предварительно разделить ректификацией. [c.338]

    При газофазном нитровании изобутана выход третичного продукта замещения гораздо меньше, чем при хлорировании, потому что высокая температура реакции (около 420°) способствует частичному пиролизу трег-нитробутана, в то время как первичный изомер, как и во всех остальных случаях, термически заметно более стабилен. С другой стороны, нитрование изобутана в запаянной ампуле при 150° дает только третичный изомер [75]. Состав продуктов нитрования н-бутана сильно зависит от температуры (см. табл. 147) [87]. [c.568]

    При сульфохлорировании пропана и н-бутана в растворе четыреххлористого углерода образуется смесь изомерных моносульфохлоридов, соотношение которых в противоположность хлорированию и нитрованию уже нельзя определить ректификацией. Температуры кипения изомеров отличаются друг от друга относительно мало, а высокие флег-мовые числа при перегонке использовать нельзя вследствие способности этих соединений к легкому разложению. Ниже приведены температуры кипения (при 15 мм рт. ст.) чистых изомеров моносульфохлоридов пропана и н-бутана (в ° С)  [c.575]

    Пропановая колонна работает обычно при 0,6—0,8 МПа и температуре верха 70 °С. Для разделения изомеров бутана применяют колонны с 100—120 тарелками, давление в колонне 0,8 МПа и температура верха 55 °С. Бутановая фракция разделяется в колонне с 60—80 тарелками при 0,3 МПа и температуре верха 73 °С. Исследования фактических режимов работы изобутановой колонны показывают, что для получения изобутана и н-бутана чистотой 97—98% необходимо 100—ПО тарелок в колонне при флегмовом числе не менее 19 [13]. Аналогичные результаты получены также при оптимизации проектных режимов изобутановой колонны в работе [14]. Так, оптимальное флегмовое число составляет 17,5 при коэффициенте избытка флегмы 1,5 и числе тарелок 100—ПО (при к. п. д. тарелок 0,6). Для изопентановой колонны оптимальный коэффициент избытка флегмы оказался равным 1,4. [c.282]

    При ультрафиолетовом облучении смесей парафина с двуокисью серы образуются сульфиновые кислоты (см. стр. 505). Дэйтон и Айвин [94а], открывшие эту реакцию, показали, что если парафином является пропан или н-бутан, то получается смесь изомеров, причем в случае н-бутана в ней преобладает вторичный продукт замещенйя. Это согласуется с результатами, полученными при хлорировании и сульфохлорировании. Точный состав смеси не был определен. [c.574]

    В 1946 г. была опубликована статья Воге и Мэй [28], в которой сообщалось об измерениях равновесия реакции (IX). Применив спектральный метод анализа (исследование спектров поглощения в инфракрасной области), авторы имели возможность количественно определить в равновесных смесях содержание всех трех изомеров бутена с прямой цепью , т. е. бутена-1, г ыс-бутена 2 и транс-бутена-2. [c.309]

    На рис. 2 и 3 приведены данные но изменению концентрации бутена-1 и бутена-2-траис в отдельных зонах по высоте реактора во времени при оптимальном (см. рис. 2, а, 6) и неоптимальном (см, ])ис. 3, а, б) режимах активации катализатора (зависимости от бутепа-2-г ис не приведены ввиду их качественной идентичности с зависимостями для трякс-изомера). Все зависимости характеризуются общими особенностями. Во-первых, в течение 1 ч работы катализатора концентрация бутепов в аервой зоне резко возрастает, так как процесс алкилирования в присутстиии цеолитных катализаторов по аналогии с сернокислотным алкилированием [11 характеризуется индукционным периодом и циркуляция реагентов по замкнутому [c.340]

    Химическое строение самих углеводородов чрезвычайно многообразно. Наряду с нормальными соединениями, начиная с бутана, возможны различные изомеры одной и той же химической формулы. [c.77]


    Разделение газа производится примерно следующим образом (рис. 40). После компримирования и отделения водорода абсорбционным способом фракция С4 стабилизируется. При этом отгоняются кипящие при —23° метилацетилен и пропан, образующие азеотропную смесь. Смесь углеводородов С4 затем ректифицируется в колонне, имеющей 100 тарелок. Здесь отделяется смесь из бутена-1 и бутадиена с некоторым количеством изобутана, изобутена и к-бутана (бутадиеновый концентрат), причем к-бутан частично уходит с дистиллятом, а частью остается в остатке. В остатке остаются оба бутена-2, часть к-бутана и гомологи ацетилена (С4). В этой связи интересно сопоставить температуры кипения отдельных изомеров в нормальных условиях (см. стр. 11 и 36) с летучестью в условиях экстрактивной перегонки (см. стр. 78). Остаток поступает в депента-низатор, где от него отделяются высшие углеводороды, а головной продукт, состоящий из бутена-2, [c.81]

    Технический пентан содержит еще следы бутана и незначительное количество наиболее низкокипящего изомера гексана — триметилэтил-метана (СНз)зСС2Нг, (т. кип. 49°). [c.177]

    Аналогичное положение отмечается также в случае газофазногс нитрования пропана и н-бутана при 400°, когда изомеры еще можно разделить ректификацией. При этом количества образующихся изомеров таковы, что отношение скорости замещения первичного атома водорода ко вторичному, как и для хлорирования, равны 1 3,25. [c.573]

    Бтио/з-бутилбензол готовился в большом количестве конденсацией бутена-2 с бензолом в автоклаве (нагретом до 150 в теченне 12 час.) в присутствии таблетированного катализатора, содержавшего адсорбированную фосфорную кислоту (твердый фосфорнокислый катализатор). Отношение беизола к бутену-2 равнялось 2,5 1 выход неочищенного ето/ -бутилбензола в среднем составлял 70 %i или 45% после перегонки и доведения его до 98—99 %-ной степени чистоты. Тот же катализатор оказался пригодным для конденсации этилена с толуолом при температуре 275° и давлении 35—91 ат при этом получалась смссь этилтолуолов (выход 63%). Состав смеси полностью ие определялся, но было найдено, что в ней содержалось около 50% о /гео-изомера. Фосфорная кислота непригодна в качестве катализатора для приготовления [c.481]

    Смесь обоих изомерных сульфохлоридов пропана переводили в сульфамиды и определяли температуру плавления смеси сульф,амидов. Получив чисто синтетическим путем индивидуальные пропан-1- и пропап-2-сульфохлорид, их переводили в сульфамиды и по температурам плавления смесей известного состава этих двух сульфамидов строили диаграмму плавкости, которая изображена на рис. 104. По положению точки плавления смеси пропансульфамидов неизвестного состава на кривой диаграммы плавкости можно было установить соотношение обоих изомеров в смеси. В случае н-бутана метод исследования был тот же, по в качестве производных применялись jV-циклогек-силсульфамиды. На рис. 105 изображена диаграмма плавкости смеси jV-циклогексилбутилсульфамидов. [c.575]

    Эти исследования показали, что оба изомерных пропанмоносульфохлорида образуются в отношении 50 50, а отношение бутап-1-к бутан-2-сульфохлориду в продуктах сульфохлорирования н-бутана составляет 33 37. Отсюда видно, что распределение изомеров при [c.575]

    В патенте [28] смесь продуктов алкилирования предлагается разделить также в одной сложной ректификационной колонне (рис. -31). Однако, в отличие от патента 27], конденсацию изо-бутаяовой фракции, выводимой в паровой фазе боковым погоном, рекомендуется осуществлять теплообменом с жидкостью в низу изобутановой колонны, которая используется для предварительного разделения исходной смеси изомеров бутана. [c.240]

    Видно, например, что наиболее благоприятным для г ис-присоединения водорода является положение двойной связи в 1,2-диметилциклогексене (ряд а). В то же время при гидрировании 1,2- и 2,3-диметилциклопенте-нов (ряд з) цис- и гранс-изомеры образуются в одинаковом соотношении. Это свидетельствует о том, что в избранных условиях взаимная изомеризация этих циклоалкенов протекает гораздо быстрее, чем их гидрирование. Длина и объем радикала, расположенного непосредственно у двойной связи, фактически не сказываются на. стереоселективности гидрирования циклогексенов (ряд в). Этот вывод, по-видимому, следует считать предварительным, поскольку среди изученных углеводородов отсутствует 1-трет-бутил-4-метилциклогексен. Объемистый радикал, находящийся у двойной связи, может в определенной мере ее экранировать, изменяя стереоселективность гидрирования. Определенное влияние оказывает объем радикала, находящегося в положении 4 к двойной связи (ряд б) при гидрировании 4-трет-бу-тил-1-метилциклогексена образуется гораздо меньше г с-изомера, чем в случае 1,4-диметилциклогексена. Естественно, что указанные закономерности могут изменяться с изменением условий эксперимента. [c.33]

    Сущность экстракционной перегонки заключается в том, что весьма близкая к единице величина коэффициента относительной летучести компонентов системы, характеризующая в данном случае особую трудность их разделения, претерпевает, в присутствии надлежащим образом подобранного растворителя, серьезное изменение, заметным образом отклоняясь от единицы и тем самым, создавая сравнительно более благоприятные условия для разделения исходной системы на ее практически чистые составляющие. Так, например, на установках каталитической дегидрогенизации н-бутана с целью получения бутенов, фракция продуктов реакции в основном состоит из неразложившегося н-бутана, бутена-1 и высоко- и низкокипящего изомеров бутена-2. При этом отделение бутенов-2, особенно же низкокипящего их изомера, от н-бутана методами обычной ректификации практически неосуществимо. Если же в колонну ввести специальный высококипящий растворитель, например, фурфурол, фенол или ацетон, то разделение этих же компонентов оказывается вполне возможным. Объясняется это тем, что в обычных условиях летучесть н-бутана (4ип = — 0,5° С), отнесенная к летучести низкокипящего изомера бутена-2 (4ип = 0,9° С) составляет К = 1,0125. Если же рассмотреть коэффициент относительной летучести этих же веществ в присутствии растворителя—фурфурола, то оказывается, что он доходит до АГ= 1,7, т. е. значительно возрастает и тем самым значительно облегчается разделение этих веществ в ректификационной колонне. Разница в летучестях н-бутана и бутенов в условиях экстракционной перегонки объясняется различной растворимостью алканоз и алкенов в растворителях типа фурфурола, фенола или ацетона. [c.154]

    В химическом отношении предельные углеводороды весьма инертны. Начиная с бутана, они обладают изомерией, т. е. имеют перазветвленное и разветвленное строение цепей из атомов углерода. Чем больше атомов углерода в молекуле, тем больше число изомеров. Пентан имеет три изомера, гексан — пять, гептан — девять, декан — семьдесят пять. [c.20]

    Значение К может быть найдено из равновесных концентраций. Это уравнение позволяет определить индивидуальные константы скоростей, так как сумму ( 1-1- /сг) можно измерить, а отношение / 1/ 2 = К известно. Если отношение К = кх/к2 очень велико или очень мало, то это означает, что одна из двух реакций медленная по сравнению с другой. Тогда можно пренебречь более медленной реакцией, и случай сведется к одной простой реакции первого порядка. Такого типа реакций много. Среди них газофазные превращения цис- и транс-изомеров, например изостильбена СеНбСН = = СНСвН [1], каталитическое превращение и-бутана в изобутан С4Н10 в растворе [2], рацемизация а- и р-глюкозы [3] и других сахаров [4], превращение у оксимасляной кислоты в лактон в водных растворах [5]. [c.34]

    Результаты [4], полученные при гидрировании 4-трет-бутил-1-метиленциклогексана над РЮг, приведены на рис. 4. Предполагают, что наиболее вероятным первоначальным продуктом его изомеризации является 4-грет-бутил-1-метилциклогексен. На следующем этапе идет, по-видимому, одновременное гидрирование обоих соединений при этом при низких давлениях водорода 4-трет-бутил-1-метиленциклогексан практически селективно превращается в цис-4-трет -бутил-1-метилцикло-гексан, а из 4-трег-бутил-1-метилциклогексена образуется главным образом транс-изомер. Изменение соотношения цис- и транс-изомеров при увеличении давления водорода в ходе гидрирования 4-грег-бутил-1-метиленцик- [c.25]

    Например, при проведении реакции в присутствии хлористого алюминия при температуре от —20° до —15° была получена с выходом 72% смесь хлор-/и/)ет-бутилциклогексанов, из которых около 85% составлял изомер (III), остальное — изомер (IV) основной побочный продукт — хлорциклогексан — получен с выходом в 5%. С другой стороны, при использовании в качестве катализатора фтористого бора при 0° был получен только изомер (IV) с выходом в 23% вместе с продуктом дегидрохлорирования его 1-/га/)е7и-бутил-1-циклогексеном (выход 12%) и цикло-гексилхлоридом (выход 15%). При применении в качестве катализатора хлористого висмута при 0° или при комнатной температуре был получен конденсат хлорбутилциклогексанов (с выходом 5% и 21—25% соответственно), подобный тому, который был получен ири использовании хлористого алюминия при —25°- --15°  [c.230]

    При достаточно мягких условиях процесса действие хлористого алюминия на нормальный или мзо-бутаны можно ограничить изоморизацией с достаточно хорошим выходом (см. П-20). При воздействии хлористого алюминия на более высокие углеводороды происходит перераспределение, ведупцее к получению продуктов, кипящих либо выше, либо ниже исходных. Как полагают, эта реакция по аналогии с деструктивным алкилированием [614] включает в себя превращение нормальных парафиновых углеводородов в их изомеры. Вслед за этим последние разлагаются на изобутан и олефин. Часть этого олефина будет алкилировать предшествующий изопарафин, а часть — соединяться с катализатором, где и подвергнется комбинированной полимеризации. Для н-йен-тана [615], н-гексана и м-гептана [616] обнаружены продукты, наличие которых объясняется именно такой последовательностью реакции. Изооктан, 2,2,4-триметилпентан, также дает изобутан и более высококипящие предельные углеводороды. [c.137]

    Изомеризация парафиновых углеводородов на хлориде алюминия освещена в работах [1—4]. 1 Хлорид алюминия, обеспечивая термодинамически благоприятные условия протекания реакции, позволяет осуществлять ее при 50—150 °С. Эта температура способствует образованию продуктов, обогащенных разветвленными изомерами. Однако наряду с бесспорными достоинствами зтот катализатор обладал рядом отрицательных особенностей, усложняющих технологию процесса и зксплуатацию промышленных установок. Тем не менее во время второй мировой войны в связи с потребностью в алкилате для приготовления высокооктанового авиационного бензина процессы изомеризации на хлориде алюминия получили развитие, в основном для изомеризации н-бутана в изобутан. Первая промышленная установка была введена фирмой Shell в 1941 г. К концу второй мировой войны в США были разработаны пять процессов изомеризации, которые отличались либо методом введения хлорида алюминия в зону реакции, либо носителем для катализатора, либо его физическим состоянием. [c.5]

Рис. 1. Молярные проценты изомеров бутана и равновсоиоп смеси [21 ]. Рис. 1. <a href="/info/684089">Молярные проценты</a> изомеров бутана и равновсоиоп смеси [21 ].
    Например, в работе Кистяковского и Смиса [29] при исследовании кинетики реакции термической изомеризации г мс-бутена-2 в транс-бутен-2 попутно установлено, что при температурах 620 и 663° К в равновесной смеси содержится около 53% транс-изомера (52,8%). Другой исследователь [25] указывает, что при темнературе около 100° С (65—126°С) в равновесной смеси содержится около 7 % бутена-1. [c.311]

    Пентаны. С увеличением молекулярного веса увеличивается легкость изомеризации парафинов, но вместе с тем увеличивается и размер реакции перераспределения. Можно создать условия, при которых будет проходить изомеризация только бутана (селективная изомеризация), но для нентанов и более высоких углеводородов создать такие условия трудно. При 27° С над А1Вгз равновесная смень и-пентанов и изопентанов содержит 70 и более процентов изомеров с разветвленными цепочками при 0° С — около 90% [423]. В побочных реакциях даже при 0° С образуются также и более высоко- или низкокипящие углеводороды (гексаны, гентаны и изобутап). С увеличением температуры количество побочных реакций увеличивается [423, 397]. Несмотря на то, что термодинамические условия благоприятны, неопентан не показывает и признака изомеризации даже после 1000 часов обработки при комнатной температуре нет нигде сообщений о его присутствии в продуктах какой-либо изомеризации пептана. н-Пентан изомеризуется нри более мягких условиях, чем н-бутан. Изомеризация низкооктанового легкого сырья каталитического риформинга, содержащего к-нентан и гексаны, на практике осуществляется нри помощи хлористого алюминия [431]. [c.118]

    Важной особенностью хемоэкстрагентов по сравнению с обычными органическими экстрагентами является селективность при разделении углеводородов, имеющих одинаковое число л-связей, но различную структуру изо- и нормальных углеводородов (например, изобутилена и 1-бутена), транс- и ЫС-изомеров (например, транс- и цис-пш раленов) и т. п. Последнее особенно интересно, так как проблема разделения транс- и цис-пипериленов до сих пор не имела приемлемого технического решения. [c.677]

    Кто прав в споре двух учеников Первый утверждает, что оба изомера бутана содержат 10 атомов водорода и 10 ковалентных связей. Второй говорит, что у одног( изомера 10 водородных атомов и 13 ковалентных связей, а у другого — 10 водородных атомов и 10 ковалентных связей. [c.193]

    Чтобы различить изомеры неразветвленных алкенов, нумерацию атомов углерода начинаю с того конца углеродной цепи, к которому ближе двойная связь. После названия ставят цифру, соответствующую номеру атома с двойной связью. Именно так поступили в случае бутена-1 и бутена-2. Третья приведенная сгруктура хотя и является бутеном, обычно рассматривается как метилзамеи(енный пропен. [c.215]

    До сих пор в нефтях найдены все теоретически возможные изомеры лишь для бутана, пентана и гексана, частично для гептана, октана, нонана и декана высшие члены метанового ряда, начиная с СцН24 и далее, до сих пор рассматриваются как нормальные соединения. [c.77]

    Из рис. 1, на котором представлена динамика изменения конт ентрации 2,2,4-, 2, 3,3- и 2,3,4-ТМП (они составляют до 90 % продуктов алкилирования) в изобутане на выходе из слоя катализатора во времени, видно, что максимум интенсивности образования основного продукта (2,2,4-ТМП) достигается за 3 ч работы катализатора (максимумы интенсивности других двух изомеров сдвинуты на 4—5 ч). Представляет интерес то, что динамика накопления к-бутана и изопентана несколько иная (рис. 2 и 3, кривые I) количество этих продуктов в первые 2 ч работы катализатора вефьма незначительно, а в последующие примерно пропорционально продолжительности процесса. Интересно, что но данным других авторов [31 обра.чование к-бутана максимально именно на начальной стадии алкилирования (рис. 2, кривая 2). [c.344]


Смотреть страницы где упоминается термин Бутены, изо и изомеры: [c.125]    [c.481]    [c.198]    [c.232]    [c.106]    [c.8]    [c.84]    [c.296]    [c.191]    [c.74]    [c.75]    [c.224]   
Электрохимические реакции в неводных системах (1974) -- [ c.131 ]




ПОИСК







© 2025 chem21.info Реклама на сайте