Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сополимеризация зависимость свойств сополимеров

    Приведены условия получения новых материалов с ценными техническими свойствами путем сополимеризации этилена с пропиленом в присутствии окислов хрома на алюмосиликатном носителе. Получены данные, характеризующие зависимость свойств сополимеров от содержания пропилена в исходной смеси мономеров и от условий процесса сополимеризации. [c.550]


    Для правильного выбора сомономеров и их концентраций в исходной шихте и получения сополимеров с заданными свойствами, проводилось исследование свойств сополимеров в зависимости от содержания второго сомономера и определение констант реакционной способности различных пар мономеров [34, 35]. Применяемый для расчета относительной активности различных пар мономеров по данным констант сополимеризации метод Майо—Льюиса недостаточно точен [36]. [c.378]

    Свойства сополимеров изменяются не только в зависимости от природы мономеров, но также от их соотношения, метода сополимеризации, температуры, инициирования и т. д. Обычно сополимеры имеют нерегулярное строение, так как в их цепях различные элементарные звенья расположены беспорядочно, и нельзя выделить периодически повторяющийся участок цепи. В связи с участием в реакции нескольких мономеров и соответственно нескольких образующихся радикалов сополимеризация значительно осложняется. Так, при двух мономерах рост цепи может протекать по крайней мере четырьмя путями [c.458]

    Весьма сложная зависимость кинетических параметров сополимеризации и свойств образующихся сополимеров от мольного соотношения А1/Ме в системе обусловлена тем, что алюминийорганические соединения принимают участие как в реакциях катализатора, так и в некоторых актах каталитической сополимеризации. В частности, они алкилируют соединения переходных металлов, в ряде случаев входят в состав активных центров, а также принимают участие в восстановительных процессах и в реакциях ограничения цепи. Наблюдаемые эффекты представляют собой результат наложения зачастую противоположно направленных воздействий. Возможно именно поэтому иногда наблюдается изменение направления зависимости скорости полимеризации, выхода или молекулярного веса сополимера от мольного соотношения А1/Ме и появление оптимального соотношения [158, 204). [c.42]

    В последующих параграфах главы описаны исследования оптимальных режимов радиационной полимеризации и сополимеризации полиэфирмалеинатов и свойств сополимеров в зависимости от их строения.  [c.145]

    Важным фактором, влияющим на свойства сополимеров, является характер распределения звеньев этилена и сомономера в макроцепях. Известно, что это распределение связано с величиной произведения констант сополимеризации. Значениям произведения констант сополимеризации, близким к единице, соответствует беспорядочное распределение, с уменьшением этой величины порядок в чередовании звеньев обоих типов в макроцепях увеличивается. Влияние различия в распределении можно видеть, например, по данным рис. 22, на котором представлены кривые температурной зависимости динамических потерь сополимеров этилена, содержащих 20% винилацетата. Максимум потерь для сополимеров с беспорядочным [c.33]


    Два примера подобных расчетов представлены в графической форме на рис. 6.2 и 6.3. Из рис. 6.2 и 6.3 следует, что при сополимеризации метилметакрилата с акрилонитрилом и стиролом состав мономерной смеси меняется весьма значительно, вплоть до полного исчерпания более реакционноспособного мономера. Особенно ярко это выражено в первом случае, когда на заключительной стадии сополимеризации образуется гомополимер менее активного мономера. Зависимость состава сополимера от конверсии приводит к неоднородности сополимера по составу, которая, как правило, отрицательно отражается на его свойствах. При построении диаграмм, подобных рассмотренным выше, следует иметь в виду, что состав валового сополимера при 100 %-й конверсии равен составу мономерной смеси. [c.302]

    Молекула полимера может быть образована полимеризацией двух или более мономеров. Если молекула вещества состоит из двух чередующихся мономеров А и В, то оно называется сополимером. Если одновременно сополимеризуются три мономера, то получающееся вещество называют терполимером. Сополимеризацию используют для того, чтобы сообщить получающемуся сополимеру свойства, присущие каждому из отдельно взятых гомополимеров. В зависимости от характера взаимного расположения звеньев сопо- [c.37]

    Омыление сополимеров ВА открывает путь получения широкой гаммы новых гидроксилсодержащих полимеров, которые невозможно синтезировать методом сополимеризации. В зависимости от состава исходного сополимера, характера распределения в нем звеньев сомономеров и их химической природы существенно меняются физико-механические свойства продуктов омыления и пО являются возможности их дальнейшей химической модификации. [c.89]

    Модификация свойств полиэтилена достигается сополимеризацией этилена с небольшим количеством бутилена или пропилена. При этом несколько снижается плотность, модуль упругости при изгибе, твердость (в зависимости от содержания второго мономера) и возрастает ударная вязкость и особенно стойкость к растрескиванию. Так, для сополимеров плотностью 0,940 и 0,930 г/см и показателем текучести расплава до 0,6 г/10 мин стойкость к растрескиванию достигает 700 и 3000 ч соответственно. [c.31]

    При сополимеризации винилхлорида с различными мономерами нарушается регулярность строения макромолекул, чем объясняется более рыхлая упаковка макромолекул сополимеров Это обстоятельство в свою очередь является причиной лучшей растворимости сополимеров по сравнению с соответствующими гомополимерами В зависимости от условий проведения реакции сополимеризации получают сополимеры различного строения с заданными свойствами (блок-сополимеры, привитые сополимеры и т д ) [c.154]

    Широкое использование полимеров винилхлорида требует улучшения их технологических свойств. Чтобы получить расплав с достаточно низкой вязкостью без снижения молекулярного веса или изменения молекулярно-весового распределения полимера необходимо вводить пластификатор или полимерную добавку (в частности, получая сополимеры винилхлорида) или вести процесс переработки при повышенных температурах. Использование внешних пластификаторов позволяет получить термопластичные композиции. При сополимеризации или использовании добавок (в зависимости от концентрации сомономера или добавки) можно получить либо гибкие, либо жесткие материалы. В любом случае достигается снижение температуры стеклования. [c.237]

    Детально изучена реакция сополимеризации стирола и его алкил- или галоидопроизводных с различными маслами (льняное, тунговое, соевое, касторовое и др.). Свойства полученных сополимеров различаются в зависимости от их состава. Применяются они главным образом для получения лаков и прозрачных эластичных пленок [867—905]. [c.217]

    Хотя привитая сополимеризация имеет длинную историю [156, 167], тем не менее она изучена еще недостаточно. С точки зрения авторов настоящей монографии, основной причиной непонимания многих аспектов привитой сополимеризации является недостаточная изученность морфологии и фазового разделения в привитых сополимерах. Исторически сложилось так, что вопросами привитой сополимеризации занимались либо специалисты в области органического синтеза, либо специалисты в области радиационной химии. Как правило, программы исследований строились в соответствии с интересами их авторов. Так, в области синтеза наиболее распространенным методом анализа являлся метод измерения степени набухания и содержания гель-фракции, находящихся в обратной зависимости. При уменьшении степени набухания и увеличении содержания гель-фракции часто делали вывод об увеличении степени прививки. Улучшение механических свойств, например улучшение стабильности размеров, также обычно объясняли увеличением числа привитых цепей. До появления метода контрастирования тетраоксидом осмия [450, 451] большинство исследователей имело недостаточные представления о фазовом разделении в материалах, которые они исследовали. Хотя в работе [983] отмечено существование двух фаз, тем не менее отсутствие необходимой экспериментальной техники не позволило исследовать двух-фазность сополимеров более детально. [c.185]


    Боковые разветвления, введенные в линейную цепь полиэтилена в результате сополимеризации с а-олефинами, оказывают заметное влияние на многие свойства полимера. На рис. П1.7 и П1.8 приведены некоторые данные об изменении плотности сополимеров этилена, синтезированных на катализаторе окись хрома — алюмосиликат, в зависимости от содержания бутена-1 в смеси, поступающей в реактор. Данные получены для неориентированных образцов с индексом расплава от 0,5 до 0,7. С учетом линейной зависимости между кристалличностью и плотностью не удивительно резкое и почти линейное уменьшение прочности при изгибе с понижением плотности (рис. И1.7). То же было показано для сополимеров, полученных на промотированных катализаторах окись молибдена — глинозем Прочность при растяжении, температура размягчения и твердость — все эти показатели понижаются, когда в результате введения разветвлений увеличивается доля аморфной фазы в полимере и уменьшается его плотность. [c.96]

    Голубева с сотр. обнаружили, что теплостойкость сополимеров стирола с винилнафталином, полученных в эмульсии, изменяется почти линейно с изменением состава независимо от того, какой изомер берется, от 110° С для чистого полистирола и до 160° С для чистого поливинилнафталина. На рис. Х.24 показана зависимость удельной ударной вязкости сополимеров от содержания стирола. Усманова с сотр. показали, что сополимер с оптимальными свойствами можно получить при эмульсионной сополимеризации стирола и 2-винилнафталина (взятых в весовом соотношении 70 30) при 60° С в течение 3—4 ч. Этот сополимер более теплостоек, чем полистирол (приблизительно на 30° С) их механические и диэлектрические свойства одинаковы. Ниже сравниваются свойства этих двух полимеров [c.328]

    Первые два фактора являются в определенной степени контролируемыми, т. е. могут регулироваться в зависимости от требований к сополимерам. Третий фактор имеет особое значение, так как процесс сополимеризации сочетается с формованием конкретных изделий, а следовательно в большой мере определяет свойства последних. [c.137]

    Наибольшее практич. значение для создания целлюлозных матерпалов, обладающих новыми технически ценными свойствами, имеет синтез привитых сополимеров Ц. К наиболее распространенным методам синтеза привитых сополимеров Ц. относятся исиоль-зование реакции передачи цепи на Ц., радиационно-химич. сополимеризация и использование окислительно-восстановительных систем, в к-рых Ц. играет роль восстановителя. В последнем случае образование макрорадикала может идти за счет окисления как гидроксильных групп Ц. (окисление солями церия), так и специально введенных в макромолекулу функциональных групп — альдегидных, аминогрупп (окисление солями ванадия, марганца), или разложения диазосоединения, образующегося при диазотировании введенных в Ц. ароматич. аминогрупп. Синтез привитых сополимеров Ц. в ряде случаев может быть проведен без образования гомополимера, что уменьшает расход мономера. Привитые сополимеры Ц., получаемые в обычных условиях сополимеризации, состоят из смеси исходной Ц. (или ее эфира, на к-рый осуществляется прививка) и привитого сополимера (40—60%). Степень полимеризации привитых цепей колеблется в зависимости от метода инициирования и характера прививаемого компонента от 300 до 28 ООО. [c.398]

    Экспериментальные трудности были четко отмечены Марвелом и сотр. [45], которые изучали сополимеризацию бутадиена и стирола при — 75° в бромистом этиле с хлористым алюминием в качестве катализатора. Они нашли, что воспроизводимые результаты можно получить только в безводной среде. Осушка повышает также общий выход полимера. Физические свойства сополимера зависят от концентрации катализатора, времени реакции, а также от применения н-гексана в качестве разбавителя. В бромистом -бутиле реакция протекает так же, как в бромистом этиле. В бромистом изопропиле для получения той же степени превращения и того же типа сополимера требуется более высокая концентрация катализатора. Применение в качестве растворителя бромистого трет-шяла приводит к образованию растворимой вязкой жидкости, вероятно вследствие преобладания передачи с участием этого соединения. Некоторые осложнения при реакции и зависимость свойств сополимера от условий реакции можно объяснить образованием поперечных связей и другими реакциями с сопряженным диеном. Во всех опытах стирол был более активным, чем бутадиен. [c.477]

    Для изучения свойств фталидсодержащих метакрилатов нами была проведена сополимеризация метилметакрилата и З-метакрилокси-З-фенилфталида при 60°С. Зависимость состава сополимера от состава мономерной смеси (рис. 1) позволяет увидеть, что сополимер содержит не только IV, но и звенья метилметакрилата, независимо от состава мономерной смеси. [c.7]

    Реакции сополимеризации, как и полимеризации, могут протекать по радикальному и ионному механизмам. Тип процесса сополимеризации существенно влияет на состав, структуру и свойства сополимера. В случае свободнорадикальной сополимеризации значения констант сополимеризации определяются реакционной способностью мономеров и не зависят от инициирующей системы. При ионной сополимеризации иа значения констант сополимеризации оказывают влияние природа каталитической системы и полярность среды. На рис. 2.2 представлена зависимость состава сополимера от состава смеси мономеров при сополимеризации стирола с метилметакрилатом различными способами. Таким образом, из одного и того же состава исходной смеси мономеров, но используя различные способы сополимеризации, можно получить сополимеры разного состава, а соответственно и разных свойств. [c.40]

    Значительное увеличение теплостойкости может быть достигнуто при сополимеризации стирола с акрилонитрилом и с нитрилом фу-маровой кислоты, однако вследствие полярного характера этих мономеров значительно снижаются диэлектрические свойства полимера. В табл. 21 показана зависимость теплостойкости сополимера стирола и нитрила фумаровой кислоты от содержания нитрила. [c.212]

    Полимеры с реакционноспособными кремнийсодержащими группами. Другим направлением исследований кремнийсодержащих полимеров является синтез и изучение свойств сополимеров различных непредельных кремнийорганических соединений со стиролом и метилметакрилатом [11]. Изучена активность випильных соединений кремния в реакциях радикальной сополимеризации и влияние силильных групп на реакционную способность кратной связи. Выявлены некоторые закономерности образования сополимеров в зависимости от условий реакции, определены константы активности при сополимеризации метилметакриалата и непредельных органосиланов, а также вычислены факторы активности и полярность последних, Полученные данные свидетельствуют о том, что кремпий-олефины обладают повышенной способностью к полимеризации по сравнению с их органическими аналогами. Замена электро-нодонорных метильных радикалов у атома кремния на электроноакцепторные заместители (С1) или группы, способные к р — -сопряжению (СвНа), приводит к некоторому увеличению реакционной способности кратной связи кремнийолефина. [c.284]

    Состав и строение концевых групп полиэфиров также оказывают заметное влияние на механические свойства отвержденных продуктов [16, 22]. Так, жесткость сополимеров полиэфиров со стиролом возрастает с увеличением концентрации концевых СООН и снижением содержания ОН-групп [16]. Изучение физико-механических свойств продуктов сополимеризации ненасыщенных полиэфиров с преимущественно карбоксильными концевыми группами и сравнение их со свойствами сополимеров обычных полиэфиров (синтезированных с 5—10% (мол.) избытком гликоля) показало, что повышенное содержание концевых СООН-групп приводит к значительному повышеннию Е, Н я Осж [5]. Исследовано влияние межмолекулярного взаимодействия, обусловленного наличием полярных концевых групп в молекулах полиэфиров, на механические свойства их сополимеров со стиролом [22]. На примере сополимеров политриэтиленгликольмалеинатсебацината, модифицированного янтарным ангидридом, который в различных количествах присоединяется к концевым ОН-группам, было показано, что характер зависимости Ор от соотношения концевых групп неодина- [c.144]

    Исследование зависимости прочности жестких сополимеров полиэфиров высокой и средней степени ненасыщенности от содержания стирола проводило сь многими авторами [17, 30 59—61]. Опубликованные данные в ряде случаев носят противоречивый характер, что может быть связано с большими различиями в составе и строении исходных полиэфиров и условиях отверждения их стирольных растворов. Так, показано [17, 59], что зависимость Н, Ои, Стсж и Ор отвержденных продуктов от содержания стирола экстремальна, причем оптимальные свойства сополимеров ряда полиэфиров на основе этилен- и диэтиленгликоля, дихлоргидрина пентаэритрита, малеинового и фталевого ангидрида, адипиновой и дифеновой кислот достигаются при 33—40%-ном содержании стирола в исходных растворах. Такой вид зависимости можно объяснить тем, что при малой концентрации стирола в смолах двойные связи полиэфиров вступают в реакцию сополимеризации не полностью, т. е. наблюдается недоотверждение , в результате чего показатели механической прочности не достигают оптимальных значений. При увеличении количества стирола сверх оптимального прочностные показатели сополимеров снижаются, что может быть вызвано повышенными внутренними напряжениями и наличием микро- и макродефектов вследствие большой усадки и высоких экзотермических эффектов при отверждении. [c.156]

    Незначительная зависимость состава сополимера ВЦГ с МА от состава исходной мономерной смеси дала возможность оценить относительные реакционные способности ВЦГ и МА в процессе их сополимеризации. По методам Майо-Льюиса и Файнемана-Росса рассчитаны константы совместной полимеризации ВЦГ с МА (гмд = 0,28 гвцг = 0,008) и на их основе определены параметры Q и е для ВЦГ (0 = 0,0709 е= -0,27), т.е. ВЦГ представляет собой мономер, проявляющий электроннодонорные свойства и обладающий незначительной реакционной способностью в радикальной полимеризации. Однако в процессе сополимеризации реакционная способность ВЦГ возрастает благодаря донорно-акцепторному взаимодействию его с молекулами МА и ХМА. О таком взаимодействии свидетельствует возникновение окраски при смешивании растворов донора и акцептора и появление новых полос поглощения в электронных спектрах растворов смесей исследуемых пар сомономеров, отсутствующих в спектрах отдельных компонентов. [c.164]

    Сополимеры бутадиена с нитрилом акриловой кислоты (СКН). Сополимеризация бутадиена с нитрилом акриловой кислоты осуществляется в водной эмульсии. Бутадиен-акрилонитриловый сополимер содержит 25—40% акрилонитрила, в зависимости от чего изменяются его свойства. Сополимер, содержащий 25% [c.266]

    Свойства сополимеров а-олефинов рассмотрим на примере сополимеров )тилена с пропиленом. В зависимости от природы и свойств катализаторов и условий проведения сополимеризации могут быть получены по крайней мере четыре типа сополимеров атактические аморфные каучукоподобные кристаллические нерегулярные кpи тaJГличe киe стереоблоксополимеры. [c.263]

    Шостаковский с сотр. [52—55] и ряд других авторов [50, 51] подробно исследовали полимеризацию и сополимеризацию акриловых и метакриловых производных олова. Показано, что оловосодержащие акрилаты и метакрилаты легко полимеризуются в блоке и в растворе и сополимеризуются с метилметакрилатом, стиролом и другими непредельными соединениями с образованием твердых прозрачных сополимеров. В качестве инициатора реакции полимеризации использовалась перекись бензоила или динитрил азобисизомасляной кислоты. Термомеханические свойства сополимеров триалкилстаннилметакрилатов с метилметакрилатом изменяются в обратной зависимости от величины алкильного радикала. Исследованы также механические и диэлектрические свойства некоторых сополимеров [54]. [c.135]

    Поскольку отрезки разнородных по химическому составу отрезков цепей, составляющих макромолекулы блок- и привитых сополимеров, достаточно велики, они могут сегрегироваться с образованием отдельных микрофаз. Поэтому, если свойства обычных сополимеров, как правило, усредняются по сравнению со свойствами составляющих их компонентов, то блок- и привитые сополимеры обычно объединяют в себе свойства исходных гомополимеров. В зависимости от числа составляющих их компонентов они могут иметь, например, несколько температур стеклования, а температура текучести сополимера определяется наивысшей температурой текучести одного из компонентов. Так, блок-сополимер бутадиена и стирола имеет две температуры стеклования — 0°С (полнбутадиен) и 100 °С (полистирол). Именно поэтому реакции привитой или блок-сополимеризации широко используются для увеличения деформируемости ряда природных жесткоцепных полимеров, например целлюлозы или крахмала, для которых высокоэластическое состояние не реализуется, поскольку температура стеклования этих полимеров [c.62]

    Итак, сополимеризация позволяет резко расширить ассортимен . полимеров, и широко варьировать их свойства. Чаще она проводится по свободнорадикальному механизму, реже — по ионному. Существенное значение имеет относительная реакционноспособ-ность мономеров, оцениваемая по величинам констант сополимеризации. От нее зависит различие состава сополимера и ис.ходной смеси мономеров, характер распределения звеньев каждого из мономеров а макромолекуле сополимера. По последнему признаку сополимеры делятся на статистические, альтернантные, блок- и привитые. При одном и том же соотношении звеньев мономеров в макромолекулах сополимеров их свойства резко различаются в зависимости от указанного характера чередования этих мономерных звеньев. [c.66]

    В работах [211 223] показаны отличительные свойства эти чен отефиновых сополимеров в зависимости от распределе I ИЯ мономерных звеньев в сополимерной иепи при использова нич в качестве катализаторов сополимеризации систем [c.40]

    Таким образом, при трехкомпонентнои сополимеризации в зависимости от концентрации сомономеров состав и структуру сополимера можно варьировать в широких пределах Такой ха рактер изменения структуры и состава может оказывать замет ное влияние на свойства полученных сополимеров [c.86]

    В зависимости от типа функциональных групп латексному полимеру придают те или иные специфические свойства [179—196]. Так, при сополимеризации с акрилонитрилом образуется сополимер, служащий основой для получения волокон с хорошей окраши-ваемостью [179]. При использовании диацетонакриламида в качестве сомономера при синтезе цлевкообразователей можно получить высококачественные эмульсионные краски [180]. Сополимеры, содержащие амидные и метилоламидные группы, находят применение в медицине [181], в качестве добавок к моющим средствам [182], в качестве защитных коллоидов [183] , в лакокрасочной промышленности [195—196]. [c.131]

    Во многих случаях сополимеризации возникающая композиционная неоднородность на межмолекулярном или внутримолекулярном (или обоих) уровнях является следствием особенностей кинетики сополимеризации. Частным случаем является анионная сополимери-зация стирола и бутадиена, при которой можно получить образцы почти с любой степенью распределения компонентов [3]. По механическим характеристикам блоксополимеры легко отличить от статистических сополимеров [1, 4, 5]. Однако небольшие различия в поведении должны, вероятно, возникать и из-за композиционной це-однородности статистических сополимеров, у которых отсутствуют длинные последовательности любого из мономеров, но тем не менее состав изменяется по цепй. В связи с этим было бы желательно установить некоторые пределы совместимости макромолекул одинакового состава, но различающихся распределением мономеров, по цепи. Были исследованы смеси полимеров, приготовленные из однородных статистических сополимеров бутадиена и стирола. (Термин однородные статистические используется для обозначения сополимеров, состав которых не зависит от степени конверсии композиционная неоднородность таких сополимеров не выходит за пределы, большие, чем несколько мономерных звеньев.) В настоящем сообщении обсуждаются результаты измерений механических динамических характеристик и зависимостей между напряжением и двойным лучепреломлением смесей. У бинарных смесей указанных выЬае компонентов, различающихся по составу более, чем на 20%, явно проявляется микрогетерогенность, которая иногда наблюдается даже и у полимерных смесей, менее различающихся по составу. Полученные результаты анализируются с позиций однопараметрических моделей, одна из которых сравнительно успешно объясняет динамические и оптические характеристики смесей при известных свойствах входящих в них компонентов. [c.83]

    Влияние способа инициирования и типа инициатора свободнорадикальной сополимеризации акрилонитрила с фибриллярной целлюлозой на свойства ткани, полученной из этого сополимера, про-иллюстрируется данными табл. 4 [31]. Молекулярный вес привитого сополимера изменяется от 3,3 10 до 5,9-10 и зависит от способа инициирования и условий эксперимента. Между молекулярным весом привитого сополимера и свойствами ткани на его основе нет определенной зависимости. При условиях реакции сополимеризации Б получаются модифицированные ткани с более высокими значениями разрывной прочности, сопротивления раздиру и истиранию при изгибах и в плоскости. Улучшение свойств обусловлено отчасти влиянием условий эксперимента на морфологию волокон, а также тем, что поперечное сечение волокон круглое и привитой полимер распределен однородно по поперечному сечению. При условиях реакции А начальная форма поперечного сечения целлюлозных волокон пе изменяется, а привитой полимер концентрируется в наружных слоях волокна. Ткань, полученная этим методом, характеризуется повышенным сопротивлением истиранию при изгибах и в плоскости и более высокой разрывной прочностью по сравнению с контрольной тканью (из немодифицированной хлопковой целлюлозы). Однако ее сопротивление раздиру меньше, чем у контрольного образца, а сопротивление истиранию при изгибах ниже, чем у образца, полученного в условиях Б. Метод Б может быть развит в непрерывный процесс, при котором ткань вначале погружают в раствор винилового мономера и затем облучают. При всех указанных способах получения сополимеров происходит уменьшение молекулярного веса целлюлозы вследствие окислительной деструкции. [c.229]

    В Японии осуществлена сополимеризация бутадиена со стиролом и изопреном в р-ре на алфиновом катализаторе в присутствии дигидроароматич. соединений, напр. 1,4-дигидронафталина, являющихся регуляторами мол. массы. Благодаря применению регуляторов удалось получить каучуки с мол. массой 150—300 тыс. (вместо 5—10 млн. в отсутствие регулятора), с вязкостью по Муни 40—50 и хорошими технологич. свойствами. Выпускаются ненаполненные и маслона-полне1шые (37,5 мае. ч. ароматич. масла) сополимеры бутадиена с 5 и 20% (по массе) изопрена, с 5 и 15% (по массе) стирола. Микроструктура бутадиеновой части О—15 6 1,4-г и.с-звеньев, 55—70% 1,4-тракс-звеньев и 20—30% 1,2-звеньев. Характеристич. вязкость этих сополимеров в несколько раз выше, чем у бу-тадиен-стирольных каучуков. имеющих ту же вязкость по Муни. При комнатной темп-ре алфиновые каучуки находятся в частично закристаллизованном состоянии, благодаря чему у них отсутствует хладотекучесть т. пл. 40—90 °С (в зависимости от состава каучуков). При 80—100°С они легко перерабатываются смеси на их основе [c.151]

    Полимеризацией и сополимеризацией М. в эмульсии и р-ре получают композиции, используемые для приготовления лаков (см. Полиакриловые лаки и эмали) и в качестве пропитывающих составов. Поскольку эмульсионный П. обладает пленкообразующими свойствами только при содержании 40—50% дибутилфталата, акриловые латексы либо содержат пластификатор, либо чаще всего представляют собой дисперсии сополимеров М. с этил- или бутилакрилатом и небольшим количеством метакриловой к-ты. Эмульсионную полимеризацию проводят обычно в присутствии водорастворимых перекисей или окислительно-восстановительных инициаторов (напр., персульфата аммония и гидросульфита натрия). В зависимости от требований, предъ- [c.102]

    Следует заметить, что закрепление инициатора в зоне адсорбционного слоя ПМЧ искусственным образом, независимо от его олярности, приводит к резкому изменению скорости его распада [206]. Локализация реакции разложения инициатора в адсорбционном слое может быть достигнута путем использования инициаторов, обладающих ярко выраженными поверхностно-активными свойствами, или химическим связыванием пероксидных инициирующих групп с поверхностью ПМЧ. Последний способ может быть реализован при эмульсионной сополимеризации виниловых мономеров с ненасыщенными пероксидами, например с метакрило-еым эфиром а-гиДроксиэтил-грег-бутилпероксидом (МЭП), причем пероксидные группы в зависимости от способа синтеза латекса могут быть равномерно распределены по объему частицы или преимущественно сконцентрированы на ее поверхности [207]. В табл. 5.3 приведены данные по разложению пероксидных сополимеров в виде латекса и в растворе хлорбензола, а также константы распада мицеллообразующего поверхностно-активного пероксида П1 в водном растворе. и его аналога IV, не проявляющего склонности к мицеллообразованию [207]. Из приведенных данных видно, что адсорбционный слой латексной частицы или мииелляр-ное состояние вещества оказывает решающее влияние на кинетику распада инициатора. Следует отметить факт разложения чрезвычайно устойчивых диалкильных пероксидных групп с высокими скоростями в латексных системах при относительно низких температурах. Этот факт может быть связан только с локализацией пероксидных групп в зоне адсорбционного слоя. Из рис 5,4 видно, что после разложения поверхностных пероксидных групп распад [c.122]

    Реакции гомополимеризации а-олефинов и винильных мономеров протекают с образованием полимеров, на 97— 100% построенных по принципу голова—хвост , вследствие термодинамической выгодности соответствующих актов роста. Однако в процессе сополимеризации, например, этилена с пропиленом [335] или а-амиленом [424], по-видимому, возникают условия, благоприятные для нарушения регулярности цепи и сочленения звеньев по принципу голова к голове . В этом случае обычные константы относительной активности мономеров оказываются зависимыми от состава мономерной смеси [425]. Количество аномальных присоединений в сополимерах, полученных на системе VAAg—Al (изо-С4Нд)2С1, составляет около 20% по отношению к этилену в сополимере эквимоляр-ного состава. Присоединения такого типа обнаружены и в сополимерах, полученных на других ванадийсодержащих каталитических системах. Анол1альные присоединения, наличие разветвленности и конверсионная полимеризация увеличивают композиционную неоднородность сополимеров, что положительным образом сказывается на их эластомерных свойствах. [c.81]


Смотреть страницы где упоминается термин Сополимеризация зависимость свойств сополимеров: [c.520]    [c.13]    [c.187]    [c.212]    [c.154]    [c.14]    [c.136]    [c.271]   
Химия высокомолекулярных соединений (1950) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте