Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кадмий медных сплавах

    Алюминий и его сплавы чувствительны к контактной коррозии. В обычной атмосфере усиливает коррозию контакт с медью и медными сплавами, с никелем и его сплавами, с серебром. Допустим контакт со сталями, кадмием, цинком, хромом, титаном, магнием. В морской и пресной воде не допустим контакт с медью и ее сплавами, с титаном, с нержавеющими сталями, с никелем, оловом, свинцом, серебром. Допустим контакт с цинком и кадмием. [c.75]


    Применение цинковых или кадмиевых прокладок, покрытие цинком или кадмием медных сплавов при контакте их со сталью, а также цинкование или кадмирование стальных деталей при контакте с алюминиевыми сплавами, по-существу, также основано на принципе электрохимической защиты. В обоих случаях в систему медь — железо и железо — алюминий включают третий анод (цинк или кадмий), смещающий потенциал к таким значениям, при которых коррозия контактирующих анодов уменьшается или оказывается равной нулю . Этим методом широко пользуются в технике, что было иллюстрировано выше на конкретных примерах защиты магниевых и алюминиевых сплавов, а также судостроительных конструкций. В частности сообщается, что металлизация судостроительных сталей цинком обеспечивает надежную их эксплуатацию в контакте с алюминиевыми сплавами в течение длительного времени (5—8 лет). [c.198]

    Анодная защита применима только для таких металлов и сплавов (в основном переходных металлов), которые легко пассивируются при анодной поляризации и для которых /пасс достаточно низка. Она неосуществима, например, для цинка, магния, кадмия, серебра, меди и медных сплавов. Показано, что возможна анодная защита алюминия в воде при высокой температуре (см. разд. 20.1.2). [c.229]

    Кадмий. Кадмиевое покрытие на железо и сталь обеспечивает протекторную защиту, аналогичную оказываемой цинковым покрытием. Оно может использоваться вместе с грунтовым покрытием оловом для нанесения на медные сплавы. Обычно максимальная толщина покрытия составляет 25 мкм. Применять более толстослойные покрытия невыгодно из-за высокой стоимости кадмия. Тонкослойные покрытия (около 2,5 мкм) можно использовать в качестве подслоя для нанесения цинка на чугун. [c.92]

    Прямое определение Sb в сочетании с рядом других элементов производится в самых разнообразных материалах, в том числе в алюминии [54, 55, 1134, бериллии и его соединениях [305, 1297], боре [778, 11171 и фосфиде бора [26], ванадии и его окислах [234, 491, 1117], висмуте [809, 909, 1134], вольфраме и его соединениях [195, 739, 795, 1265], вольфрамовых рудах [1480], германии и его соединениях [559, 634, 905], горных породах [386, 730, 1182, 1240, 1336, 1443, 1599], графите и углероде [235, 397, 612], жаропрочных и тугоплавких сплавах [176, 177, 379, 1278, 1593], железе [425, 1134, 14411, железных рудах и минералах [198, 386, 636, 971, 1336], сталях [176, 546, 1278, 1441, 1593] и чугуне [61, 274, 546, 1250], золоте [404, 754, 909, 1095] и его сплавах [196, 389,390, 1167], индии [1168, 1308] и сплавах на его основе [814, 815, 1267], иттрии и его окислах [234, 272], алюмоиттриевом гранате [82], кадмии [598, 599, 1134] и кадмиевых сплавах [819], кобальте [60, 153, 1134], кремнии [252, 1619], кварце [154], карбиде кремния 109, 110, 288, 789, 790, 1353], кремниево-медных сплавах 594], силикатах [1586], технических стеклах [612, 1579], меди 129, 482, 964, 997, 1176, 1599, 1609, 1645, 1654], медных сплавах 96, 482, 1048, 1188, 1457,1463, 1566], окиси меди [199], продуктах медеплавильного производства [3601 и медных электролитах [1298, 1600], молибдене и его соединениях [104, 237, 308, 795, 1325, 1347, 1443], мышьяке [472, 1134], никеле и никелевых сплавах [486], ниобии и его окислах [49, 972], олове [582, 744, 782, 812, 900, 1684] и его сплавах [1210, 1494, 1495], полупроводниковых материалах [668, 678, 806, 1298, 16841, припоях [210, 1101], свинце [481, 534, 908, 1154, 1155,1193, 1543,1655], свинцовых сплавах [126, 871], рудах [53, 667, 806, 1143] и пылях [811], РЗЭ и их окислах [234, 353], селене [154, 155, 499, 747, 818, 1134], селениде ртути [715], сере [189, 1134], серебре [388, 390, 391, 909, 1598], хло- иде серебра [1362], стеклоуглероде [397], сульфидных рудах 638], тантале [237], теллуре [156, 591, 592, 1134, 1613], теллуровом баббите [1656] и теллуриде свинца [342], типографских сплавах [323], титане и двуокиси титана [288, 306, 1262], тории и его окислах [272], уране [1447], окислах урана [878, 1182, 1240] и урановых рудах [1443], ферросплавах [792, 793], фосфоритах [879], хроме [555, 729, 792] и его окислах [54, 55, 571], цинке [976] и цинковых рудах и минералах [1142], цирконии [679] и двуокиси циркония [1368], производственных растворах [205, 882, 1290, 1323, 1324, 1483], сточных и природных водах [429], азотной, серной, соляной, уксусной, фтористоводородной и бромистоводородной кислотах [111, 121, 407, 552, 574, 10081, воздушной пыли [121. [c.81]


    Такого рода процессы используются для нанесения защитных и декоративных металлических покрытий на различные изделия (покрытие медных сплавов серебром или золотом, железных сплавов никелем, хромом, кадмием), а также для рафинирования (очистки) металлов. Напрнмер, так получают рафинированную медь для нужд электротехники. [c.148]

    Из суспензии можно получать покрытия на металлах и других материалах, способных выдержать нагревание до 370 °С. Эти покрытия могут применяться как антифрикционные, антиадгезионные, антикоррозионные (для защиты от атмосферной коррозии, но не от агрессивных сред), электроизоляционные. Покрывать можно все металлы (сталь, никель, хром, кадмий, серебро, алюминий), кроме меди и медных сплавов, [c.145]

    Суспензии представляют собой взвеси тонкоизмельченного порошка полимера в спирте, иногда с добавлением ксилола или воды с поверхностно-активным стабилизатором. Суспензия должна иметь строго определенные тонину помола и фракционный (по размерам частиц) состав. Ею можно покрывать изделия из конструкционной и нержавеющей стали, никеля, хрома, кадмия, цинка, алюминия и т. д., но не из меди и медных сплавов, которые катализируют деструкцию полимера. [c.185]

    Как было отмечено, алюминий и его сплавы очень чувствительны к контактированию с другими металлами. Самыми опасными являются контакты с более положительными металлами — медью и медными сплавами. В ря.де условий вреден контакт с железом, сталью и коррозионно-стойкой сталью. Контакт с цинком и кадмием в условиях, когда алюминий находится в пассивном состоянии, безвреден и даже несколько защищает алюминий. Магний и магниевые сплавы, несмотря на то, что они имеют значительно более отрицательный потенциал, при контакте с алюминием оказываются также опасными, так как вследствие сильной катодной поляризации алюминия он может перейти в активное состояние под влиянием защелачивания среды (эффект катодной перезащиты алюминия). В результате опасных контактов происходит более существенное разрушение алюминия в электропроводных средах, содержащих ионы хлора. В атмосферных условиях при достаточной влажности отрицательное влияние контактов также может проявляться, хотя и будет распространяться только на поверхность алюминия, непосредственно прилегающую к контакту. [c.265]

    Медь применяется для изготовления электрических проводов. В тех случаях, когда нужны проводники более твердые, берут сплавы меди. Из хорошо проводящих медных сплавов наиболее известен сплав меди с кадмием, содержащий около 1% d. [c.220]

    По сравнению с черными металлами, фосфатирование цветных и легких металлов значительно реже применяют в промышленности. Однако в некоторых случаях этот процесс может оказаться весьма полезным. Целесообразно использовать его для обработки таких сплавов, как АМг, АЛ4, поскольку получаемая фосфатная пленка по своим защитным свойствам не уступает пленкам, формированным более трудоемким способом анодирования металла. Можно применить этот процесс для повышения надежности лакокрасочных покрытий на деталях из медных сплавов за счет лучшей адгезии их к фосфатированной поверхности. Защитная способность фосфатных пленок на магнии и сплаве электрон выше, чем пленок, полученных химическим оксидированием в растворах, содержащих селенистую и плавиковую кислоты. Фосфатирование цинка и кадмия, при котором исключаются операции осветления и пассивирования покрытий, значительно улучшает их антикоррозионные свойства в жестких климатических условиях. Однако, учитывая, что трудоемкость процесса 278 [c.278]

    Некоторые металлические наполнители придают полимерам специфические свойства, например порошки железа и его сплавы — ферромагнитные свойства чешуйки алюминия, никеля, серебра — низкую газе- и паропроницаемость порошки алюминия и медных сплавов—декоративность. Материалы, наполненные свинцом, кадмием и вольфрамом, пригодны в качестве защиты от излучений высокой энергии [32]. Порошки меди [33] улучшают фрикционные характеристики композиционного материала (рис. П.З). [c.63]

    Защищает черные металлы (сталь, чугун), никель, хром, чистый алюминий, оксидированные и фосфатированные детали. Не защищает цветные металлы — медь и медные сплавы, припои, свинец, цинк, кадмий, магний, бронзу То же [c.78]

    В связи с этим в производстве ацетилена должно быть обращено особое внимание на материалы для изготовления аппаратов и деталей, непосредственно соприкасающихся с ацетиленом или его гомологами. Запрещается применять для этих целей медь и медные сплавы, а также серебро и серебряные припои. В виде исключения для изготовления пробоотборников и измерительных приборов разрешается использовать сплавы, содержащие не более 70% Си. Эго относится также к оборудованию, в котором находятся растворители или вода, содержащие ацетилен, в частности оборудование, устанавливаемое в насосных водооборотного цикла, не должно иметь медных частей. Не рекомендуется также применять цинк (оцинкованные трубы), кадмий или сплавы с высоким содержанием этих металлов. [c.390]


    Покрытия наносятся на чистую, обезжиренную поверхность металла. Можно покрывать изделия из конструкционной и нержавеющей стали, никеля, хрома, кадмия, цинка, алюминия и т, д,, но не из меди и медных сплавов. [c.166]

    Применение кадмия и его соединений. Металлический кадмий вводят в низкоплавкие сплавы (припои). К медным сплавам кадмий добавляется для повышения прочности их (не понижая электропроводности). Им покрывают железные и стальные изделия (кадмирование) для предохранения от коррозии. Кадмий поглощает нейтроны, не пропуская сквозь себя, поэтому нашел применение в атомных реакторах в виде заслонок для регулирования цепной реакции. Применяется в щелочных кадмиево-никелевых аккумуляторах. [c.385]

    При обнаружении О,Ох—х% примесей в медных сплавах основную часть меди обычно отделяют электролизом на платиновом сетчатом катоде из сильно кислых растворов. Цинк, кадмий, индий, алюминий и частично свинец и олово остаются в растворе. Остаточное количество меди после электролиза колеблется в пределах 0,1—0,2% по отношению к анализируемой навеске и при правильном выборе индифферентного электролита не оказывает влияния на полярографирование. [c.134]

    ОПРЕДЕЛЕНИЕ КАДМИЯ В МЕДНЫХ СПЛАВАХ ТРИЛОНОМЕТРИЧЕСКИМ МЕТОДОМ С ПРИМЕНЕНИЕМ ИОННОГО ОБМЕНА  [c.48]

    Известные весовые и объемные методы определения кадмия в медных сплавах являются трудоемкими и не отличаются высокой точностью при определении небольших количеств кадмия. [c.48]

    Добавление кадмия в медные сплавы также повышает их механическую прочность, жароустойчивость и сопротивление коррозии введение циркония увеличивает и твердость такие сплавы используют в линиях высоковольтных передач. В платиножелезных сплавах кадмий служит для изготовления часовых пружинок, а со свинцом и оловом — для типографских клише [456, стр. 73]. [c.13]

    Особенности пайки. К числу особенностей меди и ее сплавов, влияющих на выбор способа пайки, относятся химическая стойкость оксидов содержание во многих сплавах легкоиспаряющихся элементов — цинка, кадмия, марганца склонность кислородсодержащей меди и некоторых ее сплавов к водородной хрупкости повышенная способность меди образовывать интерметаллиды с некоторыми компонентами припоев повышенная способность меди и ее сплавов к хрупкому разрушению в контакте с жидкими припоями повышенная горячеломкость некоторых медных сплавов. [c.291]

    Методы инверсионной вольтамперометрии находят широкое применение для определения Sb в различных материалах, в том числе в чугунах, железе и сталях [1348, 1575], меди и медных сплавах [87, 116, 526, 569, 1348, 1575,1585], олове[221, 222, 224, 225, 242, 318, 526], алюминии [131, 132, 731, 1503], галлии и его солях [243, 245, 293, 303], арсениде галлия [243, 245, 246, 303, 586], кадмии и его солях [302, 318, 737], германии, тетрахлориде и тетрабромиде германия [105, 134], кремнии, двуокиси кремния, тетрахлориде и тетрабромиде кремния и трихлорсиланах [105, 133, 271, 310, 1503], цинке и цинковых сплавах [67, 737], серебре [605, 731J, свинце [833], теллуре [116], мышьяке [303], хроме и его солях [940], барии [125], ртути [528], висмуте [1348], никеле и никелевых сплавах [590], припоях [1348], полиметаллических рудах и продуктах цветной металлургии [116], растворах гидрометаллургического производства [138, 319, 1545], шламах [1175], ниобии и тантале и их соединениях [223, 2901, химических реактивах и препаратах [105], криолите [245, 586], материалах, используемых в злектронной [c.68]

    Методом атомпо-абсорбционной спектрофотометрии определяют Sb в различных материалах, в том числе в алюминии и его сплавах [954, 1469], геологических материалах, минеральном сырье и горных породах [97, 732, 863, 954, 1338, 1391, 1485, 1638], железных рудах, железе, чугуне, стали и ферросплавах [888, 954, 1069, 1140, 1141, 1601], меди и медных сплавах [1392, 1534, 1673], мышьяке и его сплавах [1534], никеле, никелевых сплавах и соединениях [954, 955, 1594], олове и его сплавах [1354], оловянносвинцовых припоях [1166], свинце, его сплавах и солях [267, 268, 1354, 1450], галенитах [1387], сплавах редких и цветных металлов [1140, 1321], полупроводниковых материалах [265, 1122], рудах [97, 1511, 1601, 1638], почвах [1391, 1594, 1638], силикатных материалах,. керамике и стеклах [652, 1587], чистых веш,ествах [315],. солях ш,елочных и ш,елочноземельных металлов [387], природных и сточных водах [1123, 1209, 1213, 1367], плутонии [1622], солях цинка и кадмия [387], синтетических волокнах [1321], пиш,евых продуктах [1367], пистолетных пулях [948], добавках к нефтепродуктам [1563], химических реактивах и препаратах [264—266, 268, 387]. [c.93]

    Фотометрические методы определения мышьяка в виде мышья-ковомолибдеповой сини находят широкое применение. Они используются для определения мышьяка в его соединениях [529], железе, чугуне и стали [48, 540, 666, 698, 773, 785, 790, 885, 917, 943, 949, 952, 996, 1131-1133, 1147], ферросплавах [217, 702, 703, 1203], меди и медных сплавах [158, 195, 197, 216, 515, 562, 815, 886, 952, 1043, 1133, 1209, 1210], рудах и продуктах медного и свинцово-цинкового производства [21, 81], железных рудах [652, 822, 949, 1108], свинце [158, 264, 627, 695, 886, 926, 952, 990, 1133], серебре и его сплавах [1070], Вольфраме и его рудах [1203], олове [307, 585, 661, 1208], сурьме [91, 197, 198, 264, 284, 837, 886, 894, 952, 956], висмуте [265, 764], цинке [158, 627, 926, 952], ниобии и ванадии [284], галлии [284, 2881, индии [284, 289, 430], таллии [284, 287], кремпии [284, 872], германии ]б99, 700, 872], селене [637, 1016, ИЗО], теллуре [758], хроме и его окислах [198, 216], алюминии [144], кадмии [158], олове [886], молибдене и его окислах [459], никеле [402, 562], боре [893], уране [661, 760, 849, 928], минералах [415, 869, 994], пиритах и пиритных огарках [302, 491], фосфорной [940, 941], азотной [892], серной [939] и соляной [197, 452] кислотах, природных водах [785, 942, 993], дистиллированной воде [452], фосфатах [942] и фосфорсодержащих продуктах [980, 1091], силикатах и силикатных породах [869, 942, 964, [c.61]

    Для прямого потенциометрического титрования d " (и других ионов) комплексоном III в боратном буферном растворе в качестве индикаторного применяют Ag-электрод в присутствии 10 М Определению мешают ионы NHJ и анионы, образуюш ие с Ag" " более прочные комплексы, чем комплексон III [743]. В другой работе раздельное или совместное титрование смесей d, Си и Zn <5 другими тяжелыми металлами производят при номош и регист-рируюш его титратора [401]. При определении кадмия в медных сплавах используют обратное титрование избытка комплексона III (или циклогександиаминтетрацетата) солями Hg " . [c.120]

    С тетрароданмеркуриатом аммония. Розовая окраска указывает на неполное удаление железа появление кристаллов — на присутствие меди, кобальта, никеля, цинка, кадмия. Поскольку суждение о наличии трех первых ионов уже сделано, необходимо обнаружить только 2п + и С(12+. Большие количества меди следует удалить, используя алюминиевую фольгу (методику см. в разделе Анализ медных сплавов ), и в полученном растворе обнаружить цинк и кадмий (последний с р-нафтохинолином после удаления свинца серной кислотой). [c.199]

    Это старейший электрохимический метод анализа, известен с 1864 г. В настоящее время он применяется только дпя ощ)еделения меди и анализа медных сплавов, содержащих олово, свинец, кадмий, цинк. Будучи безэталонным методом, электрогравиметрня по правильности и воспроизводимости результатов превосходит другие методы ощ)еделения этих элементов. Однако на проведение анализа требуется много времени, и метод считают уст евшим. [c.195]

    Нек-рые металлич. наполнители придают полимерам специфич. свойства, наир, порошки железа и его сплавов — ферромагнитные свойства, чешу11ки алюминия, никеля, серебра и др.— низкую газо- и паропроницае-мость, порошки алюминия и медных сплавов — декоративность. М. п. на основе тонкодисперсных порошков платины, палладия, родия, иридия и железа обладают способностью катализировать реакции гидрирования и часто превосходят по каталитич. активности металлич. порошки. Материалы, наполненные свинцом, кадмием и вольфрамом, пригодны в качестве защиты от излучений высокой энергии. [c.99]

    По мнению Ашкенази и Джойса [54], для защиты от контактной коррозии необходимо, чтобы все алюминиевые сплавы анодировали и покрывали защитными покрытиями. Плотно прилегающие поверхности должны иметь хотя бы один слой цинкхроматного грунта. Всячески необходимо избегать контакта алюминиевых сплавов со сплавами на основе меди. Если все же такой контакт необходим, то конструкции из медных сплавов должны покрывать кадмием, по возможности фосфа-тировать и окрашивать. Места контакта со сталью следует защищать, как и в случае с медными сплавами, хотя этот контакт и менее опасен. В жестких условиях эксплуатации желательно применять уплотнения из синтетического каучука, этилцеллюлозы, полиэтилена и найлона. [c.137]

    В последней работе Тимоновой [55] число металлов и покрытий, которые можно совместно эксплуатировать с магниевыми сплавами в атмосферных условиях, несколько расширено. По мнению автора, допустим контакт не только между магниевыми сплавами различных составов, но и с алюминием и его сплавами, цинком и оцинкованными деталями, кадмием и кадмированными деталями, фосфатированной сталью (при условии пропитки фосфатной пленки маслом) и хромированной сталью (толщина покрытия не менее 60 мкм), лужеными медными сплавами и титаном. [c.139]

    Места контакта магниевого сплава с другими металлами подвер-гаютс -4(.силенной коррозии, так как большинство металлов по отнси г шению к магниевому сплаву является катодом. Защита от контактной коррозии достигается металлизацией (цинком, кадмием и др.) контак-тируемых с магниевым сплавом металлов с последующей окраской. Допускаются контакты магниевых сплавов с магниевыми сплавами любых марок, с алюминиевыми сплавами, анодированными с наполнением оксидной пленки бихроматом калия, а также с цинком, кадмием, сталью фосфатированной (при условии пропитки фосфатной пленки минеральным маслом), сталью хромированной (толщина хрома не менее 40 мкм), медными сплавами с оловянным покрытием и титановым сплавом. [c.195]

    При конструировании химических машин необходимо выбирать материалы с таким расчетом, чтобы были предотвращены условия возникновения элект[)о-химической коррозии, поэтому в деталях и узлах, где сопрягаются два металла, необходимо избегать контакта металлов, электрохимические потенциалы которых значительно отличаются друг от друга. Недопустимо создавать контакт со сталью меди и медных сплавов, никеля и никелевых сплавов, благородных металлов и их сплавов. Для предотвращения коррозионного разрушения в таких случаях целесообразно применение оцинкования и кадлшрования стальных деталей, применение прокладок и шайб из оцинкованного железа. Для нержавеющих сталей недопустимым является контакт с алюминием и его сплавами, медью и медными сплавами и т. д. Для алюминиевых сплавов недопустим контакт со сталями, медными и никелевым сплавами и допустим контакт с. юбы.ми материалами, покрытыми цинком, кадмием и алюминием. Необходилю также учитывать коррозию свинца при контакте его с портланд-цементом, так как он обладает щелочными свойства.ми. [c.81]

    Из металлов, встречающихся в медных сплавах вместе с кадмием, могут давать хлоридные комплексы цинк, хром, железо и медь. Хлоридные комплексы кадмия [С<1С1з] и [С(1С14] " име- [c.48]

    М. Н. Зверевой [2 4] па чистых со,лях бы.чо показано, чго хром и никель при отделении от 1П1х кадмия на аиноиитах вымываются вместе с медью раствором 2н. соляной кислоты. В табл. 3 приведены данные определения кадмия в сложном медном сплаве, содержащем кадмий (до 0,3%), хро% (до 0,45% ) и никель (до 0,5%). [c.51]

    На основании изложенного предлагается методика трилоно-метрического определения кадмия в сплавах на медной основе с хроматографическим отделением его на анионитах. [c.52]

    Цинк (517—521) Алюминий и его сплавы (9- 12, 20) Кадмий (284) Железо и сталь (31—39, 47) Чугун (218, 227, 230, 247—253) Сталь хромистая (58—61, 63, 64. 66—70, 72, 101) Сталь хромоникелевая (122—177) Сталь хромонике-лемолибденовая (180-217) Свинец (495—501) Олово (489) Медные сплавы (313-336, 348- 360, 363, 364, 372—375,377,378, [c.277]

    Кадмий определяется в следующих веществах цинковых обманках и сфалеритах , свинце , электролитных ваннах и электролитном цинке , чистом цинке , цинковых рудах и продуктах цинковой промышленности низкоплавящихся сплавах свинце и окислах свинца, содержащих Se и Те , медных сплавах олове, рудах, продуктах кадмиевого [c.243]

    Кобальт и никель можно разделить при анализе руд и сплавов на ЭДЭ-Юп и дауэксе-1. Алюминий, железо и медь в бронзах можно определять на СБС в Н-форме. Можно на СБС отделить бериллий от алюминия и меди. На КУ-2 в Н- и Na-форме можно разделять магний, алюминий, хром, марганец, железо, никель, медь. Цинк из медных сплавов можно выделять на СБС в NH4-фopмe, разделять железо и молибден в сталях, ферромолибдене и рудах. Молибден и рений разделяют на СБС, КУ-1, СБСР, МСФ, ЭДЭ-Юп, сульфоугле, вофатите П, амберлите ИРА-400, дауэксе-50, вофатите Ц. Ниобий и титан можно разделить на КУ-2 в Н-форме. Отделение кадмия от свинца и висмута проводят на сульфоугле, КУ-1, СБС, СДВ-3. [c.146]

    Влиянне контакта с различными металлами иа коррозии, дюралюминия достаточно полно рассмотрено Павловым [62 . Не приводя результатов его исследований, можно отметить, чк,-в растворах хлористого натрия и в морской воде контакт с медными сплавами интенсифицирует коррозию дюралюминия. Существенную роль играет при этом вторично осаждающаяся медь, образующая эффективные местные катоды. Контакт с нержавеющей сталью столь же опасен, как и с медными сплавами контакт с цинком и кадмием несколько улучщает стойкость дюралюминия. Стойкость плакированного дюралюминия меньше зависит от контактов с другими металлами. При оксидировании дюралюминия как с плакировкой, так и без нее вредное действие контактов с благородными металлами на коррозионную стойкость дюралюминия не снижается. Прп контакте с магниевыми сплавами в процессе работы макропары на алюми ниевом катоде происходит подщелачивание среды и интенсификация коррозии дюралю.миния. Оксидирование и плакировка не снижают заметно разрушения дюралю.миния ири контакте его с магнием. [c.62]

    В последние годы в СССР проведены работы в области синтеза и технологии производства ингибиторов атмосферной коррозии. Предложен ряд новых высокоэлективных средств борьбы с атмосферной коррозией. Для защиты черных и цветных металлов разработаны такие ингибиторы, как нитрит дициклогексиламина (НДА). Этот ингибитор под названиями УРУ-2бО, дайкен и диц-ган применяется за рубежом (США, Англия и др.) . НДА предохраняет от атмосферной коррозии сталь, никель-, хром, кобальт и стальные фосфатированные и оксидированные изделия на меди и медных сплавах он образует окисную пленку не влияет на каучук и синтетическую резину, текстиль, пробку, кожу, пластмассы и лаки на основе пластмасс. Однако НДА не защищает цинк, кадмий, олово, серебро, магний и его сплавы. [c.14]


Смотреть страницы где упоминается термин Кадмий медных сплавах: [c.249]    [c.149]    [c.143]    [c.350]    [c.350]   
Полярографический анализ (1959) -- [ c.243 ]




ПОИСК





Смотрите так же термины и статьи:

Кадмий сплавы

Медный

Сплавы медные



© 2024 chem21.info Реклама на сайте