Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диаграммы состояния системы аморфный полимер растворитель

    Как было показано Панковым и сотр. [25], равновесия в системе аморфный полимер — растворитель могут быть охарактеризованы графически диаграммами состояний в координатах состав — температура, вполне аналогичными диаграммам состояний низкомолекулярных бинарных систем, образованных ограниченно смешивающимися жидкостями. При температурах выше верхней критической температуры смешения или ниже нижней критической температуры смешения термодинамически устойчивы гомогенные растворы полимера любой концентрации. [c.58]


    Диаграмма фазового состояния для системы аморфный полимер— растворитель, в частности ацетат целлюлозы — хлороформ, представлена на -рис. 97. [c.168]

    Многообразие физических форм и свойств систем полимер— растворитель, обусловленное как различием в свойствах самих компонентов, так и положением системы на диаграмме состояния, делает целесообразной классификацию этих систем. Для такой классификации единственной возможностью является использование геометрических приемов анализа, которые были описаны применительно к этим системам в предыдущей главе и которые заключаются в использовании соотношения положений, а не соотношения величин. Основные принципы такого анализа сводятся к определению общей конфигурации областей распада системы на равновесные фазы, к установлению тенденции в смещении кривых фазового равновесия при переходе от низкомолекулярного компонента к полимеру, к оценке взаимного положения кривых аморфного и кристаллического равновесий и т. п. Уже отмечалось, что в настоящее время нельзя решить задачу аналитического (функционального) описания всех этих соотношений из-за отсутствия уравнения состояния конденсированных систем, и тем более систем с участием полимерного компонента. Именно поэтому в основу классификации систем полимер — растворитель положено исследование диаграмм состояния. [c.84]

    Кривая перехода системы в текучее состояние для случая аморфного расслоения задается в начальной части диаграммы Т — х кривой фазового равновесия, а при очень высоких концентрациях полимера — кривой температур текучести однофазной системы полимер — растворитель. На рис. 92 кривая 1 состоит из двух упомянутых участков участка а, отвечающего кривой фазового равновесия, и участка б, передающего изменение температур текучести полимера по мере введения в него растворителя вплоть до точки совместимости, отмеченной стрелкой. В действительности же у большинства застудневающих систем кривая не имеет максимума в области участка а и минимума в точке пересечения участков а и б, а проходит, как кривая 2. [c.204]

    НИЮ без кристаллизации (например, глицерин). Область высокоэластического состояния у низкомолекулярных веществ обычно мала, часто практически незаметна. У чистых аморфных.полимеров все три состояния — вязкотекучее (выше точки Г/), высокоэластическое (между точками Tf и Tg) и стеклообразное (ниже точки Tg) — обычно легко реализуются и имеют хотя и несколько размытые, но вполне отчетливые границы. Гомогенные смеси (истинные растворы) полимера с растворителем также могут находиться во всех трех состояниях. Обычно как температура текучести Tf, так и температура стеклования Tg представляют собой непрерывные функции состава гомогенной системы полимер—растворитель. На диаграмме состав—температура можно различить три области а — вязко-текучие растворы (выше Tf), Ь — высокоэластичные растворы (между Tf и Tg), с — стекло- [c.29]


    В некоторых случаях полимер и растворитель оказываются несовместимыми даже выше температуры плавления смеси. Тогда над кривой температур плавления на диаграмме состояния появляется бинодаль аморфного равновесия полимер — растворитель. На рис. 4.17 изображен такой случай. Для большей наглядности рассмотрим изменение системы при температурных и концентрационных переходах. [c.85]

Рис. 4.11. Различные типы диаграмм состояния системы аморфный полимер — растворитель (Гк и пл температуры кипения и плавления растворителя ВКТС и НКТС — верхняя и нижняя критические температуры смешения). Рис. 4.11. Различные <a href="/info/1828202">типы диаграмм состояния системы</a> <a href="/info/22233">аморфный полимер</a> — растворитель (Гк и пл <a href="/info/6377">температуры кипения</a> и <a href="/info/49575">плавления растворителя</a> ВКТС и НКТС — верхняя и <a href="/info/128992">нижняя критические температуры</a> смешения).
    Вернемся теперь к рис. 10 и посмотрим, какие непосредственные сведения о структуре системы полимер—растворитель можно почерпнуть из анализа этой фазовой диаграммы. Прежде всего будем подниматься от более низких к более высоким температурам вдоль оси ага = 1. Если полимер аморфный, он последовательно проходит через все три релаксационных ( физических состояния стеклообразное, высокоэластическое и вязкотекучее. Они представляют собой разновидности жидкого фазового состояния с раз ][ичной степенью, замороженности сегментальной подвижности цепей. Все это хорошо известные вещи, но о них иногда забывают при рассмотрении фазовых равновесий. В сущности, для системы аморфный полимер—растворитель всегда реализуется фазовое равновесие типа жидкость—жидкость (ибо, говоря о равновесии, мы должны принимать во внимание именно фазовое, а не релаксационное состояние той или иной двухкомпонентной фазы. При достаточно высокой температуре, но ниже ВКТС, раствор вероятнее всего распадается на два обычных раствора различной концентрации. Нередко, используя такое разделение на две жидкие фазы для фракционирования (практически в этом случае чаще варьируется растворитель, но вскоре мы убедимся, что в принципе это ничего не меняет), говорят об образовании коацервата — из-за внешней аналогии с коацервацией в амфифильных электролитных системах. [c.103]

    Характер диаграмм состояния системы полимер — растворитель зависит от химического строения и соотношения полярностей смешиваемых компонентов. На рис. 28 представлена типичная диаграмма состояния растворов аморфных полимеров в растворителях разных типов. Такие системы характеризуются наличием как верхней (ВКТР), так и нижней (НКТР) критической температуры растворения. Площадь вне кривых представляет собой область неограниченного смешения двух компонентов, а площадь, ограниченная кривыми, — те концентрации и температуры, при которых происходит расслаивание раствора. [c.80]

    Выше был рассмотрен наиболее часто встречающийся тип диаграммы состояния для системы аморфный полимер — растворитель с верхней критической температурой Но существуют системы, у которых наблюдается нижняя критическая температура смешения, т. е. совместимость увеличивается не с повышением, а с понижением температуры. Поскольку такие системы имеют практическое значение и примером их служат водные растворы целлюлозы и ее низкозамещенных эфиров (в частности, ксантогенат целлюлозы), требуется подробнее остановиться на этом вопросе. [c.78]

    Имеются две основные модели, с помощью которых можно вывести уравнения, предсказывающие влияние как температурного градиента, так и градиента концентрации растворителя на эффективность фракционирования. Первая из этих моделей предложена Капланом [22]. Каплан приводит экспериментальные факты, свидетельствующие о том, что фазовая диаграмма для раствора аморфного полимера представляет собой асимметричную кривую смешения с критической точкой, весьма близко расположенной к ординате растворителя. Поэтому Каплан постулирует, что описывающая состояние разбавленного раствора полимера при охлаждении точка пересекает кривую смешения и в осадок выпадает очень вязкая или гелеобразная фаза, находящаяся в равновесии с гораздо большим объемом практически чистого растворителя. Эта модель предполагает, что разбавленный раствор подобного типа присутствует в любой содержащей полимер зоне колонки. Как следует из расчетов Бейкера и Вильямса, гель будет выпадать в осадок при температуре, соответствующей 0-температуре Флори [37], т. е. темиературе, при которой, согласно Флори, происходит разделение фаз в системе растворитель — полимер бесконечного молекулярного веса. Обогащение смеси лучшим растворителем приведет к растворению геля и последующему выделению его в осадок, но уже при меньшей темнед)атуре. Объем элюирующей жидкости, протекающей через колонку в любой момент времени, считается малым по сравнению с объемом, взятым для создания полного градиента концентрации растворителя. Следовательно, различием между составами растворителя в верхней и нижней частях колонки можно пренебречь, Исходя из этого, Каплан получил уравнение [c.101]


    Что касается характера образующихся при кристаллизации фаз, то кристаллическая фаза обычно полиди-сперсна и несовершенна, т. е. содержит значительное количество макромолекул или их участков, обладающих свойствами аморфного состояния. Для объяснения особенностей другой фазы — насыщенного раствора полимера над кристаллической фазой — необходимо сослаться на сдвиг точки эвтектики на диаграмме состояния в сторону растворителя (см. рис. 20). Резкий сдвиг эвтектической точки приводит к тому, что температура плавления (кристаллизации) относительно медленно снижается по ере увеличения количества растворителя в системе и лишь при малых концентрациях полимера начинает рез--со падать. Поэтому при температурах, лежащих несколько ниже температуры плавления чистого полимера, концентрация его в равновесной фазе над кристаллическим толимером оказывается незначительной. Многие полимеры при получении монокристаллов выкристаллизовывают из очень разбавленных растворов. [c.68]

    Наконец, растворы ПВС могут образовывать студни второго типа с матрицей из высококонцентрированной полимерной фазы в результате перехода раствора в область распада на аморфные фазы. Условием образования студней такогр типа является перевод системы в область, лежащую на диаграмме состояния под бинодальной кривой. Подвержены ли водные растворы ПВС такому распаду или область расслоения лежит далеко от области равновесия кристаллический полимер — растворитель, т. е. не совершается ли во всех случаях первоначально образование кристаллической фазы, проходящее до выделения полимера в виде высококонцентрированного раствора  [c.181]

    Более целесообразно анализ сорбционно-диффузионного взаимодействия воды с полимерами проводить с точки зрения фазового равновесия в этих системах. Необходимость такого подхода отмечалась в [5, 317], однако не нашло своего отражения ни в характере изложения материала, ни в трактовке результатов. На рис. 6.2 приведены типичные диаграммы фазового состояния в различных системах полимер — вода. Принципиально они не отличаются от диаграмм состояния для других систем полимер — растворитель и в случае аморфного равновесия могут быть как с НКТС, так и ВКТС для частичнокристаллических полимерных матриц диаграммы характеризуются сочетанием кристаллического и аморфного равновесия. Поэтому нет ничего удивительного в том, что вода в одних областях диаграммы вызывает аморфизацию полимера, в других— является кинетическим стимулятором процесса кристаллизации [5, 317] или полиморфных превращений [5, с. 51 323 324], в третьей — образует с фрагментами макромолекул соединения включения, молекулярные комплексы 325, 326]. Аналогичные эффекты фазовых превращений наблюдаются и в других полимерных системах [33, 133]. Однако, если для воды они наблюдаются в системах с гидрофильными полимерами, то [c.216]


Смотреть страницы где упоминается термин Диаграммы состояния системы аморфный полимер растворитель: [c.73]    [c.171]   
Физико-химические основы производства искусственных и синтетических волокон (1972) -- [ c.76 , c.79 ]




ПОИСК





Смотрите так же термины и статьи:

Аморфное состояние полимеров

Аморфные полимеры

Диаграмма состояния системы полимер растворитель

Диаграммы полимер два растворителя

Диаграммы системы

Диаграммы состояния

Полимер растворители

Полимер три состояния

Системы состояние

Состояни аморфное

Состояние аморфное

Состояние растворителя



© 2025 chem21.info Реклама на сайте