Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тепловое излучение энергия

    Закон Стефана — Больцмана (закон четвертых степеней) — устанавливает, что энергия полного теплового излучения Е пропорциональна четвертой степени температуры Т. Для технических расчетов уравнение имеет следующий вид  [c.59]

    Теплообмен лучеиспусканием является частным видом теплообмена, при котором происходит превращение тепла в излучаемую энергию. Тепловое и световое лучеиспускание является процессом распространения электромагнитных волн, которые распространяются в пространстве со скоростью 300 000 км/сек. Электромагнитные волны, являющиеся носителями тепловой лучистой энергии, отличаются от волн, соответствующих световому излучению, лишь длиной волны. Если говорят, что тепло передается лучеиспусканием от одного тела к другому, то это является упрощенным объяснением явления, которое в действительности весьма сложно. Количество тепла, которое излучает твердое, жидкое или газообразное тело, является лишь частью общей излучаемой энергии. [c.128]


    Закон Стефана — Больцмана (закон четвертых степеней) устанавливает, что энергия полного теплового излучения Е пропор- [c.28]

    Под словами черное тело следует понимать тело, которое поглощает все тепловое излучение и не отражает тепловых лучей. Согласно Кирхгофу, черное тело излучает при определенной температуре максимум возможных лучей, т. е. происходит так называемое черное лучеиспускание. В этом случае говорят, что тело обладает способностью поглощения, или степенью черноты, или относительным поглощением е = 1. В практике не встречаются абсолютно черные тела, так как все тела излучают или поглощают меньше энергии, чем абсолютно черное тело при той же температуре. Относительная поглощаемость тел в данном случае меньше единицы. Такого рода тела называются серыми телами. [c.128]

    Тепловое излучение (радиация) — явление передачи тепла в виде лучистой энергии (электромагнитных волн). [c.49]

    Излучательная, поглощательная и отражательная способности. Тепловое излучение реального тела меньше теплового излучения абсолютно черного тела при той же температуре. Для определения излучательной способности реального тела по закону Стефана — Больцмана вводится так называемый коэффии иент черноты тела, или степень черноты е. Он определяется как отношение потока теплового излучения, испускаемого реальным телом, к потоку теплового излучения, испускаемого абсолютно черным телом при той же температуре. Абсолютно черное тело поглощает всю падающую на него энергию излучения, в то время как реальное тело отражает часть этой энергии, так что можно ввести коэффициент поглощения, аналогичный коэффициенту чер-иоты тела. Для теплового излучения при любой данной температуре коэффициенты черноты тела и поглощения одинаковы. [c.43]

    Для ограничения распространения пламени, защиты технологического оборудования, а также для создания безопасных условий при аварийно-спасательных работах используют водяные, паровые и аэродисперсные завесы, защитное действие которых основано на поглощении и рассеянии энергии теплового излучения. Защитное действие воздушно-водяных завес основано на частичном поглощении и рассеивании теплового излучения в полидисперсиом слое воздушно-водяной среды, как схематически представлено на [c.106]


    Запишем основные количественные соотношения, управляющие тепловым излучением. Энергия йЕ, излученная за время йЬ от элемента йА поверхности светящегося тела в пределах телесного угла под углом к нормали, дается формулой [c.353]

    Двухатомные газы Н2, N2, О2 вообще прозрачны для теплового излучения, энергия связи электронов их атомов велика и энергии кванта инфракрасного излучения не хватает для перевода электрона с орбиты на орбиту. У трехатомных газов типа Н2О, СО2 спектр поглощения (излучения) дискретный, иными словами, они поглощают (излучают) в некоторых отдельных интервалах длин волн. [c.257]

    Известное уравнение Стефана - Больцмана определяет обмен энергией при тепловом излучении  [c.168]

    Под сводовым пространством тепловое излучение горящих дуг падает на поверхность шлака, металла и футеровки. Часть падающей лучистой энергии поглощается поверхностью реакционного объема футеровки, остальная отражается обратно под сводовое пространство. [c.61]

    Передача тепла в теплообменниках происходит в основном за счет проводимости и конвекции, так как при существующих температурах тепловое излучение незначительно. Проводимость — основной механизм передачи тепла в твердых телах. Он заключается главным образом в передаче энергии при прохождении одного слоя молекул вдоль другого слоя и обмена между ними кинетической энергией. Конвекция имеет место только в потоках и заключается в реальном перемещении молекул с одного места па другое. Свободная конвекция возникает при естественном случайном движении, а принудительная является результ атом принудительного движения молекул, которое имеет место только при наличии потоков. [c.167]

    ЭТО обмен энергией и может быть определено количественно. Законы распространения теплового излучения подобны законам распространения света. Например, тела, отражающие свет, отражают и тепловое излучение. Однако существует значительное различие в степени прозрачности тел для света и теплового излучения. Примером этого может служить хорошо известный "парниковый эффект". [c.168]

    Тепловое излучение — это процесс распространения электромагнитных колебаний с различной длиной волн, обусловленный тепловым движением атомов или молекул излучающего тела. Все тела способны излучать энергию, которая поглощается другими телами и снова превращается в тепло. Таким образом, осуществляется лучистый теплообмен он складывается из процессов лучеиспускания и луче-поглощения. [c.260]

    Тепловое излучение любого твердого тела характеризуется непрерывным спектром распределения энергии излучения по длинам волн. Сам спектр излучения твердого тела всегда является неравномерным н может быть самым различным у разных твердых тел. Описать кривые спектрального распределения энергии излучения всех твердых тел единой аналитической зависимостью не представляется возможным. [c.12]

    Оценка доли выделившейся энергии, идущей на тепловое излучение. [c.175]

    Большинство твердых и жидких тел непрозрачны для теплового излучения, и для них А + Р = . Они поглощают лучистую энергию в тонком поверхностном слое. Газы не отражают, но поглощают и пропускают поток лучистой энергии. [c.166]

    Тепловым излучением называют процесс распространения тепла в виде электромагнитных волн (инфракрасное излучение). В излучающем теле тепло превращается в энергию излучения, которая распространяется в пространстве. Встречая на своем пути какое-либо тело, лучистая энергия частично превращается в тепло, частично отражается от этого тела и частично проходит сквозь пего. [c.121]

    В дальнейшем рассматривается лишь так называемое тепловое излучение, которому соответствуют длины волн от 0,4 до 40 мк. Такие лучи поглощаются телами, причем при поглощении их лучистая энергия снова переходит в тепловую. [c.402]

    Если тело нагрето, оно излучает теплоту. Тепловое излучение, так же как и видимый свет, является одним из видов электромагнитных волн. Однако оно обычно состоит из волн с большей длиной и, следовательно, с меньшей энергией, чем видимый свет. Было замечено, что энергия излучения от нагретого тела распределяется по непрерывному спектру, зависящему от температуры тела. При низких температурах спектр состоит в основном из излучения с низкой энергией, т. е. соответствует инфракрасной области. Однако при повышении температуры спектр меняется, и в нем усиливается область, отвечающая высоким энергиям. Это легко заметить, если иметь в виду, что при нагревании тела его излучение соответствует видимой области спектра. Сначала тело становится красным, а затем при повышении температуры — белым, например таким, как нити в лампах накаливания. [c.17]

    Можно привести немало примеров, когда тепловое излучение становится важнейшим механизмом теплопередачи трубные связки для топок паровых котлов, печи для металлургических и керамических работ, высокотемпературные теплообменники для химических предприятий, излучатели космических аппаратов. Для космических аппаратов тепловое излучение играет особенно важную роль, так как оно является единственным способом диссипации тепловой энергии в космическом пространстве. [c.42]


    Для температур, наиболее часто встречающихся в технике, мак симум энергии соответствует инфракрасной части спектра. Поэтому нагревание тепловым излучением, с помощью источника излучения с высокой температурой, называют также инфракрасным нагреванием. [c.299]

    Газы, так же как и твердые или жидкие тела, излучают и поглощают лучистую энергию. При расчете теплообмена между стенкой и жидкостью ввиду сравнительно малой разности температур доля теплового излучения по сравнению с теплоотдачей за счет конвекции и теплопроводности весьма незначительна и ею пренебрегают. В случае же газов разница температур между стенкой и газами иногда бывает значительной (например, при обогреве труб дымовыми газами) и тепловое излучение играет существенную роль. [c.460]

    Проникая в твердое вещество, излучение в зависимости от величины его энергии может затрагивать только валентные электроны, всю электронную оболочку атомов или же, при достаточно высокой энергии, и атомные ядра. В последнем случае оно производит не только возбуждение электронов, ионизацию, но и смещение атомов данного вещества из их нормальных положений. Зто относится как к электромагнитному излучению (видимому свету, ультрафиолетовым и рентгеновским лучам, 7-излучению), так и к потокам частиц (электронов, ионов, например, протонов или а-частиц и др.). При этом энергия излучения трансформируется частично в тепловую, вибрационную энергию твердого вещества, которая передается соприкасающимся с ним веществам, а частично в электромагнитное излучение сниженной частоты по сравнению с частотой поглощенной лучистой энергии. Местные изменения структуры твердого вещества, возникающие при его взаимодействии с излучением высоких энергий, принято называть радиационными дефектами. Радиационные дефекты, равномерно распределенные по всему сечению луча, проникающего в твердое вещество, создаются фотонами, электронами, а-частицами и т. д. [c.121]

    При температуре 2-10 К у-луч теплового излучения приобретают энергию, достаточную для того, чтобы выбить а-частицы из ядер элементов типа магния, кремния, серы. Образующиеся а-частицы вступают ч ядерные реакции, напрнмер с ядрами с образованием ядер Ni. Составьте уравнения описанных реакций. [c.17]

    Основным источником теплового излучения несветящегося пламени, развивающегося в различных топочных и печных устройствах, являются трехатомные газы СОт и Н2О. Эти газы всегда содержатся в продуктах сгорания любого топлива и при отсутствии твердых взвешенных частиц полностью определяют эмиссионные свойства факела. В отличие от двухатомных газов, которые практически прозрачны для теплового излучения, трехатомные газы обладают более высокой поглощательной способностью в инфракрасной области спектра. Как и все другие газы, трехатомные газы СО2 и Н2О обладают полосатым спектром излучения. Они поглощают и излучают энергию лишь в определенных узких участках инфракрасного спектра. В большей же части спектра эти газы являются прозрачными для теплового излучения. [c.15]

    Кривые на рис. 1 построены по приведенному выше уравнению для нескольких значений температуры. Этот рисунок иллюстрирует также закон Вина, установленный в 1893 г. Согласно этому закону длина волны, соответствующая максимуму излучения, пронорциональпа Т , или onst. Следует, однако, подчеркнуть, что закон Вина справедлив только для абсолютно черного и серого тел. Не существует реальной поверхности, которая излучает столько же энергии, сколько и абсолютно черное тело. Стефан использовал поверхность, покрытую платиновой чернью, но позже было выяснено, что почти замкнутая полость, изолированная от внешней среды и равномерно нагретая до постоянной температуры, должна быть практически эквивалентной абсолютно черному телу, если тепловое излучение выходит через сравнительно маленькое отверстие. [c.192]

    Переходя в более низкое энергетическое состояние, возбужденные частицы испускают квант света - люминесцируют. От излучения нагретых тел люминесценция отличается неравновесно-стью, так как не включает практически тепловую энергию. Это избыточное над тепловым излучение часто называют холодным светом. Из различных типов люминесценции наибольшее значение для аналитической химии имеет флуоресценция - свечение, затухающее сразу после прекращения возбуждения. [c.213]

    Хотя химики обычно отдают предпочтение тепловым единицам энергии (кДж), последнюю иногда удобно выражать в таких единицах, как электронвольт или волновое число коэффициенты перевода единиц даны в приложении 2. Соотношения между различными единицами энергии приводятся на с. 296. Легко запомнить приблизительные величины энергии фотохимически активного излучения, если отметить, что длины волн света находятся в диапазоне примерно 200— 600 нм, а соответствующие энергии — в области 600—200 кДж/моль. [c.13]

    Обмен энергией между системой и внешней средой может проявляться в различных формах механическая, тепловая, электрическая энергии и энергия излучения могут прямо или косвенно превращаться друг в друга. В 1849 г. Джоуль осуществил первую количественную проверку эквивалентности тепловой энергии, или теплоты, и механической энергии. Здесь рассматриваются превращения, в которых участвуют только тепловая энергия, обозначенная через и механическая энергия, обозначенная через эти превращения называются термомеханическими, [c.159]

    Тепловое излучение — передача энергии в виде электромагнитных волн. Этот процесс имеет место в средах, прозрачных для тепловых лучей. [c.11]

    Основной закон теплового излучения — закон Стефана— Больцмана — определяет удельный поток лучистой энергии g, Вт/м , испускаемой во всем диапазоне длин волн от О до оо абсолютно черным телом, т. е. таким телом, для которого отражательная и пропускательная способности равны нулю  [c.12]

    Наиболее важной проблемой, с точки зрения аналитического применения метода, является природа процессов релаксации в жидкостях. При рассмотрении возможности передачи энергии путем спонтанной эмиссии, теплового излучения, электрических взаимодействий показано, что найденные экспериментально времена релаксации Т, и Та, например, протонов воды могут быть объяснены лишь при учете магнитных взаимодействий между частицами через локальные магнитные поля. Локальные поля будут флуктуировать, поскольку молекулы в растворах совершают трансляционные, вращательные и колебательные движения. Компонента создаваемого таким образом переменного поля с частотой, равной частоте резонанса, вызывает переходы между энергетическими уровнями изучаемого ядра совершенно так же, как и внешнее радиочастотное поле. Скорость процесса, приводящего к выравниванию энергии в спиновой системе и между спиновой системой и решеткой , будет зависеть от распределения частот и интенсивностей соответствующих молекулярных движений. При эюм следует учитывать следующие виды взаимодействий магнитное диполь-дипольное, переменное электронное экранирование внешнего магнитного поля, эле.ктрпческое квад-рупольное взаимодействие (эффективное для ядер с / > /2), спин-вращательное, спин-спиновое скалярное между ядрами с разными значениями I. [c.739]

    Для освобождения примерзшей лыжи нужен прежде всего запас энергии. Составим список разных источников энергии, не предопределяя заранее, годится он или не годится электроаккумуляторы, взрывчатые вещества, горючие вещества, химические реактивы гравитационные устройства, механические устройспа, (например, пружинные), пневмо- и гидроаккумулято, ы, биоаккумуляторы (человек, животные), внешняя среда (ветер, волна, солнце). Это — первая ось таблиц,т1. Далее запишем возможные формы воздействия на лыжи и лед механическое ударное воздействие, вибрация, ультразвуковые колебания, встряхивание проводника при прохождении тока, взаимодействующего с магнитным полем, световое излучение, тепловое излучение, непосредственный нагрев, обдув горячим газом или жидкостью, электроразряд. Это — вторая ось. Если теперь построить таб- [c.20]

    Макс Планк (1858—1947) — крупный немевдиЯ физик, лауреат Нобелевской премии. Основные труды Пл-атса посвящены термодинамике и тепловому излучению. Введенное Планком представление о квантовом характере излучения и поглощения энергии сыграло весьма важную роль в развитии современного естеетвозиания. [c.63]

    Тепловое излучение газов. Большинство га 10в (наров) диатер-мично, однако некоторые из них, в том числе водяной пар, двуокись углерода, аммиак и двуокись серы, обладают значительной способностью испускать и поглощать лучистую энергию. [c.131]

    Протекание химической реакции в ряде случаев связано с появлением специфического излучения, интенсивность которого может не зависеть от температуры. При этом химическая энергия реакционноспособной среды непосредственно преобразуется в энергию излучения, минуя стадию нагревания излугающего тела. Такое излучение называется хемилюминесценцией. Интенсивность хемилюминесценции в принципе ничем не ограничена и может быть существенно больше, чем у теплового излучения. [c.110]

    Перенос тепла путем излучения может происходить не только в печах или апдаратах, в которых стенки нагреты до очень высо-кой температуры, но также и в аппаратах с гораздо более низкой температурой. Здесь применяются искусственные источники теплового излучения (радиаторы), питающиеся энергией извне. В качестве радиатора может быть использована газовая горелка или, чаще, электрическая лампа с относительно низкой температурой накаливания (Т<2500°К). Обычно лампы снабжают рефлектором параболической, шаровой, эллиптической формы (или комбинированным) для направления излучения в определенное место. Такой радиатор может излучать большие количества энергии, хотя температура окружающей его среды будет оставаться низкой. [c.312]

    Для технологической обработки в печах (рабочий вид энергии тепло) необходимы генерирование тепла за счет других видов энергии и передача этого тепла материалу, подвергающемуся технологической обработке. При относительно низких температурах (до 2000 К) преобразование других видов энергии в тепло в зоне технологического процесса было рассмотрено ранее, а теплооб 1ен контактный и за счет теплового излучения не выходит за рамки традиционных представлений. При температурах свыше 2000 К йеханизмы как теплогенера- [c.225]

    Передача основной дoJIИ тепла нефтепродуктам осуществляется в нагревательных печах за счет сгорания газообразного, распыленного жидкого или порошкообразного твердого топлива. На современных производствах применяются в основном трубчатые печи. При этом значительная доля энергии сгорания топлива от факела к внешней поверхности трубчатого змеевика передается за счет так называемого теплового излучения. [c.9]

    На рис. 1.3 показаны спектры излучения светящегося сажистого пламени жидкого топлива толщиной 400 мм при различных значениях коэффиц 1ента избытка воздуха, а на расстояниях от горелки 450 и 800 мм они охватывают область длин волн от 1 до 5 мк. Эта область представляет наибольший практический интерес, так как именно на нее приходится основная доля энергии в тепловом излучении промышленных пламен. Штриховкой здесь выделены такие участки спектра (окна), в которых трехатомные топочные газы СОт и Н2О не излучают. Границы указанных областей видны из табл. 1.2. [c.18]

    В 1 00 г. при исследовании теплового излучения тел Планк установил некоторые закономерности, постулируя, что энергия дискретна. Вскоре после этого на основе анализа отклонений удельной теплоемкости, в частности для твердых тел, от правила Дюлонга — Пти (гл. 2) Эйнштейн пришел к аналогичным выводам (1907 г.). Так, при понижении температуры тела его молярная теплоемкость начинает уменьшаться. Такое изменение теплоемкости может происходить при сравнительно высокой температуре, например для твердых тел, характеризующихся сильным взаимодействием между частицами, располо-жекными в узлах кристаллической решетки, т. е. имеющими достаточно большую частоту колебаний V. Таким образом, только [c.24]

    На долю инфракрасных лучей приходится около 50% всей доходящей до З мли солнечной энергии, и они имеют основное значение для жизни растений. Лучи этц почти не задерживаются туманом, что позволяет, в частности, фотографироват земную поверхность сквозь облачный покров (рис. 11-11). Инфракрасные лучи испускаются всяким нагретым предметом, в том числе каждым теплокровным животным (характерные длины волн порядка 0,01 мм). Исследованием, проведенным на гремучих змеях, было выяснено, что они имеют в передней части головы специальные тепло-чузстнительные органы и при охоте руководствуются главным образом тепловым излучением своих жертв. Высокочувствительные приемники в инфракрасном диапазоне улавливают разности температур до тысячных. долей градуса. Такое тепловидение позволяет решать ряд важных задач — от медицинской диагностики некоторых заболеваний др точного определения местонахождения самолетов в полной темноте. [c.43]

    Тепловое излучение свойственно всякому телу, имеющему температуру, отличную от абсолютного нуля. Тепловая энергия нагретого тела на его поверхности превращается в энергию электромагнитных колебаний с длиной волны от 0,4 до 40 мкм и распространяется со скоростью света. Диапазон длин волн 0,4—0,8 мкм соответствует видимым (световым) лучам длины волн 0,8— 40 мкм имеет инфра1фасное излучение. [c.11]

    Расположенные на егенках рабочей камеры печи нагревательные элементы преобразовывают электрическую энергию Б тепловую. Эта энергия, выделяемая с поверхности нагревателей путем излучения и конвекции, передается поверхности нагреваемых изделий, тары, вспомогательных транспортирующих устройств и стенкам пе- [c.12]


Библиография для Тепловое излучение энергия: [c.76]   
Смотреть страницы где упоминается термин Тепловое излучение энергия: [c.180]    [c.581]    [c.639]    [c.408]   
Процессы химической технологии (1958) -- [ c.363 , c.366 ]




ПОИСК





Смотрите так же термины и статьи:

Тепловое излучение Излучение

Энергия излучения

Энергия тепловая



© 2025 chem21.info Реклама на сайте