Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Плавка в вакууме

    Плавка в вакууме позволяет удалять из расплавленных металлов и сплавов содержащиеся в них вредные примеси, такие как растворенные газы, некоторые легколетучие элементы и металлические включения, которые ухудшают свойства сплавов. Они повышают диффузионную подвижность атомов или ослабляют межзеренные сцепления при выделении по границам зерен. Такие примеси повышают ползучесть сплава или разупрочняют его под нагрузкой. Переплав металлов в вакууме значительно снижает количество вредных примесей. [c.79]


    По указанной выше причине материал тигля для плавки металлов в вакууме не должен испаряться при рабочих температурах, а также не содержать или не образовывать в результате реакции с жидким металлом сильно летучих и легко диссоциирующих соединений. Так, например, не рекомендуется проводить плавку стали под вакуумом в кварцевых тиглях из-за значительной летучести кремниевой кислоты и оксида кремния. Плавка в вакууме также сильно ухудшает службы магнезитового тигля, удовлетворительно работающего при плавке в атмосфере воздуха. Здесь имеет место разложение материала тигля ввиду сильного испарения магния в вакууме. Испаряющийся магний конденсируется на холодных внутренних деталях печи и на смотровом стекле, что затрудняет ведение плавки. [c.96]

    Наиболее чистые металлы получают иодидным методом или с помощью очистки их вакуумной плавкой рассредоточенным электронным пучком, или методом зонной плавки в вакууме. [c.98]

    Конечным продуктом приведенных выше реакций является поли-кристаллический кремний. Для получения монокристаллов кремния и дальнейшей очистки применяют бесконтейнерную зонную плавку. В вакууме или в инертной атмосфере с помощью высокочастотного индуктора в вертикально установленном стержне кремния создается расплавленная зона, которая не растекается благодаря силам поверхностного натяжения жидкого кремния. Расплавленная зона с определенной скоростью многократно перемещается в одном и том же направлении. В результате получаются совершенные монокристаллы кремния с суммарным содержанием примесей не более 10 —10 мае. доли, %. Только бестигельная зонная очистка (1958) дала возможность кремнию стать ведущим современным полупроводниковым материалом. Дело в том, что из-за высокой температуры плавления (1414 °С) жидкий кремний реагирует с материалом контейнера (тигля, лодочки, трубок и т. д.). Поэтому для финишной очистки и получения монокристаллов кремния в принципе непри- [c.199]

    Переплавка веществ в вакууме. Способ часто используется как первый этап глубокой очистки. Одна из самых простых схем процесса сводится к следующему. В кварцевую ампулу вводят очищаемое вещество. Ампулу соединяют с вакуумной установкой и помещают в электрическую печь. Когда в ампуле будет достигнуто нужное давление, печь нагревают до тех пор, пока вещество не начнет плавиться. Летучие примеси откачивают вакуумной установкой столько времени, сколько это необходимо для очистки в каждом отдельном случае. В промышленном масштабе очищают,металлы дуговой плавкой, а в последнее время и электронно-лучевой плавкой в вакууме. Коротко рассмотрим метод электронно-лучевой плавки. [c.259]


    Электронно-лучевая плавка в вакууме дает возможность очищать тугоплавкие металлы ниобий, тантал, молибден, вольфрам, рений, и др., а также кремний и другие неметаллические вещества. При этом содержание газов (Ог, Nг, Н ) в металлах уменьшается в сотни раз. Первоначально твердые и хрупкие, плохо обрабатываемые металлы (например, ниобий и тантал) становятся пластичными и легко прокатываемыми в фольгу при комнатной температуре. Для успешной очистки давление паров примеси должно не менее чем в 10 раз превышать упругость паров самого металла и быть не менее 10г мм рт. ст. Из молибдена можно удалить практически все примеси, кроме рения, тантала и вольфрама, из вольфрама — все, кроме тантала и рения. Тантал очищается при 3000° С до 0,002% примесей. [c.260]

    Атомные радиусы ниобия и тантала почти совпадают (табл. 33), ионные радиусы одинаковой степени окисления тоже очень близки друг к другу, поэтому их соединения весьма сходны по свойствам. Металлы подгруппы УВ тугоплавки, обладают хорошими механическими свойствами, сильно зависящими от содержания примесей водорода, углерода, кислорода и азота. Эти примеси увеличивают твердость, делают металлы хрупкими и менее пластичными. Подвергнутые электроннолучевой плавке в вакууме, ниобий и тантал очень пластичны и хорошо обрабатываются в холодном состоянии. [c.333]

    Наиболее чистые металлы получают иодидным методом, а очищают электроннолучевой или зонной плавкой в вакууме. [c.334]

    Эти элементы имеют значительное сходство с элементами подгруппы уВ. Имеют большую твердость, тугоплавкие. Механические свойства их зависят от чистоты. Очищенные электроннолучевой плавкой в вакууме, они становятся пластичными и протягиваются в тонкую проволоку. Электролитически получающийся хром содержит до 3,36 л водорода на 1 кг металла. Он более тверд и менее пластичен, чем два других металла. [c.336]

    Ванадий, ниобий и тантал высокой чистоты получают (как и титан) иодидным методом или очищают их зонной плавкой в вакууме. [c.413]

    Возможность проведения плавки в вакууме и нейтральной среде для получения сплавов высокого качества. [c.134]

    При плавке в вакууме существенно облегчаются процессы дегазации переплавляемых металлов, очистки их от неметаллических включений и т. д. Таким образом, вакуум используется здесь и как защитная среда, и как технологический фактор. По указанным причинам плавка высокореакционных и тугоплавких металлов в инертных газах применяется только в тех случаях, когда в состав выплавляемых сплавов входят такие металлы, как марганец, имеющие при температуре плавления высокую упругость паров. Последнее приводит к необходимости иметь в печи остаточное давление порядка 10 мм рт. ст., что, в частности, существенно сказывается на характеристиках дуги. [c.180]

    I — лист, дуговая плавка в аргоне 2 — лист, дуговая плавка в вакууме 3 — лист, электронно-лучевая плавка 4 — литая лепешка , дуговая вакуумная плавка [c.69]

    Широкое применение в черной металлургии получила выплавка стали в дуговых и индукционных электропечах, что позволяет выплавлять сталь со значительно меньшим содержанием в расплаве РеО, точно дозировать шихту при выплавке качеств, сталей, осуществлять плавку в вакууме, под высоким давлением, получать более высокие т-ры расплава метод экономичен. [c.133]

    Главным недостатком сплавов системы Ре-А1 является их низкая технологичность. Однако применение плавки в вакууме с последующим наложением атмосферы Нг или Не с раскислением путём введения С или тщательный контроль чистоты шихтовых материалов позволяют значительно повысить пластичность сплава. Другими словами, технологичность сплавов системы Ре-А1 непосредственно зависит от качества технологии плавки. [c.56]

    Компактный рений можно получить дуговой плавкой (в вакууме или в аргоне, с расходуемым или нерасходуемым электродом) или электронно-лучевой плавкой в печах с охлаждаемым медным кристаллизатором. Литой рений с трудом поддается обработке из-за своей крупнокристаллической структуры. [c.315]

    Металлические покрытия и пленки самого разнообразного назначения получают в промышленности электрохимическими способами, путем катодного распыления металлов и другими методами. Наконец, для получения металлов особой чистоты наряду с электролитическими способами в последнее время начинают довольно широко применять методы рафинирования путем зонной плавки в вакууме [3]. [c.9]

    Для плавки в вакууме с последующей выдержкой при атмосферном давлении применяют или печи сопротивления, или индукционные высокочастотные печи. [c.190]

    Плавка жаропрочных плёнообразующихся сплавов в открытых печах нежелательна ввиду образования плён оксидов хрома, титана, алюминия, нарушающих сплошность металла и понижающих механические свойства. Металл хорошего качества можно получить плавкой в вакууме, т. е. в условиях, когда исключается возможность образования окисных плён и восстановление имевшихся. [c.79]

    Расход условного топлива (7000 кал) составляет до 0,5 г/г каустика. В готовом техническом продукте содержится около 3% Na l и 1% Na2 03. Более экономична плавка в вакуум-котлах, обогреваемых перегретой водой под давлением 225—250 ат. Вода с температурой 320—330° С циркулирует по змеевику, заложенному в стенки чугунного котла при его отливке. Расход условного топлива снижается до 0,1 г, а срок службы котла увеличивается в [c.415]


    Бескислородная медь высокой проводимости изготовляется из обычных сортов меди или из электролитической меди путем плавки в атмосфере чистой сухой окиси углерода. В такой меди остается меньше 0,05% примесей. Путем плавки в вакууме наиболее чистых сортов меди получают образцы, в которых содержится не более 0,01% примесей. Вакуумная медь имеет ббльшую плотность, чем бескислородная. Из нее для электровакуумной промышленности изготовляют медные листы, ленты, полосы, трубы, прутки, проволоку и пр. Медь используется для изготовления анодов мощных генераторных ламп, различных деталей магнетронов, волноводов высокочастотных приборов и пр. При этом важную роль играет большая теплопроводность меди, газонепроницаемость и возможность получения вакуумно плотных спаев со стеклом. Медная проволока применяется для внешней части выводов различных приборов и в других целях. [c.357]

    При электронно-лучевой плавке вещество помещают в специальное устройство, снабженное мощным источником излучения электронов. Устройство работает как рентгенова трубка, но прн более низком ускоряющем напряжении. Очищаемый образец—анод. Вольфрамовый или танталовый проводник служит в качестве нити накала катода. Очищаемый материал плавится под действием электронного излучения при непрерывной откачке, которая должна создавать давление не выше 0,01 Па. Электронно-лучевая плавка в вакууме дает возможность очищать тугоплавкие металлы ниобий, тантал, молибден, вольфрам, рений и др., а также кремний и другие неметаллические вещества. При этом содержание газов (О2, N2, Но) в металлах уменьшается в сотни раз. Перво- [c.321]

    За последние 10—15 лет получил развитие новый вид плавильных агрегатов, дающий возможность вести плавку в вакууме или разреженной защитной атмосфере, — дуговые вакуумные печи (Л. 28 и 29]. До и.х появления по существу единственным электротермическим агрегатом для плавки в вакууме являлась вакуумная индукционная печь. Однако задача получения металлов и сплавов высокой степени чистоты, особенно металлов, обладающих высокой химической активностью при температуре плавления, не могла быть решена при помощи индукционных вакуумных печей, вследствие того что в них плавка происходит в керамическом или графитовом тигле, материал которого вступает во взаимодействие с расплавляемым металлом. Известным выходом могло быть создание индукционной печи с металлическим водоохлаждаемым разрезным тиглем, однакО создать такие промыщлен-ные агрегаты пока не удалось. [c.180]

    Взаимод. с СЬ, Вга, Ь, концентриров. р-рами щелочей, выше 285 °С — с Ог, при высоких т-рах — с S, Se, Sb, As, МНз с Нз не реагирует воду не разлагает, но при высоких т-рах взаимод. с парами Н2О, с к-тами медленно реагирует. Получ. при переработке бокситов осаждают Ga(OH>3, затем концентрируют и извлекают Ga электролизом щелочных р-ров. Г, высокой чистоты получ. плавкой в вакууме. Примен, жидкий теплоноситель для заполнения ламп(пары) для нанесения отражающих нов-стей оптич. зеркал для получ. полупроводниковых материалов. Мировое произ-во ок. 40 т/год (бе.ч СССР), [c.117]

    SjJ, 41,1 Дж/(моль-К). Степень окисл.-ЬЗ, +2, +1. Взаимод. с СЬ, Вгз, Ь, концентриров. р-рами щелочей, выше 285 С — с Ог, при высоких т-рах — с S, Se, Sb, As, КНз с Нз не реагирует воду не разлагает, но при высоких т-рах взаимод. с парами НзО, с к-тами медленно реагирует. Получ. при переработке бокситов осаждают Оа(ОН)з, затем концентрируют и извлекают Ga электролизом щелочных р-ров. Г. высокой чистоты получ. плавкой в вакууме. Примен. жидкий теплоноситель для заполнения ламп(пары) для нанесения отражающих пов-стей оптич. зеркал для получ. полупрзводниковых материалов. Мировое произ-во ок. 40 т/год (без СССР), ффедоров П. И., Мохосоев М. В., Алексеев Ф. П., Химия галлия, индия и таллия, Новосиб., 1977. [c.117]

    Получение. Основной источник получения Г.— алюминиевое и, в меньшей степени, цинковое производство. При различных способах переработки бокситовой или нефелиновой руды после рафинирования алюминия Г. выделяется в ходе пирометаллур-гических и гидрометаллургических процессов посредством электролиза, карбонизации с последующей плавкой в вакууме или вытягиванием монокристалла из расплава. Оксид Г.(1П) получают обезвоживанием гидроксида Г, (П1). Сульфат Г. (П1) кристаллизуется из сернокислых растворов в виде гидрата, который обезвоживается при нагревании. [c.225]

    Т. с. получают методами порошковой металлургии (прессованием с последующим спеканием), а также нлавле-нием. Порошки металла прессуют под давлением 21—85 кгс/мм , при к-ром плотность достигает 60—70% от теоретической, после чего материал подвергают отжигу в вакууме при т-ре 1980—2500° С в течение нескольких часов. Иногда для получения более плотного материала, обладающего высокой пластичностью, отжиги чередуют с ковкой или прокаткой. В произ-ве Т. с. распространены плавка с расходуемым электродом, электроннол5 чевая и вакуумная дуговая плавки. Плавка в вакууме приводит к значительному уменьшению содержания иримесей. Более полная очистка от кислорода достигается раскислением расплава углеродом. Электроннолучевая плавка, отличающаяся сравнительно неболь- [c.496]

    Еще одно требование относится к хорошей адгезии между стеклом и металлом. Большинство металлов при спаивании со стеклом образуют тонкую вязкую окисную пленку, и стекло обычно прилипает к ней. Окисная пленка должна сама быть эластичной и сокращаться при расширении стекла и металла. Этот процесс может произойти без нарушения адгезии только в том случае, если слой достаточно тонок. О состоянии металлической поверхности часто судят по ее цвету, и это является методом оценки качества спая [1812]. В спае также должны отсутствовать пузырьки, образованные при соединении стекла и металла растворенным газом из металла или (в случае металлов, содержащих двухвалентное железо, и сплавов) углеродом из металла, который диффундирует к поверхности, где он реагирует с окисной пленкой и образует окись углерода. Такие металлы, как платина и вольфрам, не требуют обез-гаживания. Другие сплавы для спайки получают в обезгаженном виде плавкой в вакууме. Многие сплавы, содержащие железо, должны быть обезугле- [c.147]

    Металлические тантал и ниобий, получаемые в результате восстановления в виде порошков, обрабатывают затем методами металлокерамики или недавно предложенными методами — индукционной плавкой в вакууме, электродуговой плавкой и, что особенно перопективно, плавкой электронно-лучевым методом [413]. Этот метод основан на бомбардировке металла электронами, источником которых служит раскаленный металл с низкой работой выхода электрона. Метод отличается целым рядом достоинств, в том числе простотой обслуживания и экономичностью коэффициент полезного действия электронно-луче-вой установюи достигает 96%. [c.162]


Смотреть страницы где упоминается термин Плавка в вакууме: [c.203]    [c.414]    [c.418]    [c.8]    [c.133]    [c.147]    [c.221]    [c.87]    [c.173]    [c.147]    [c.385]    [c.276]    [c.628]    [c.160]    [c.165]    [c.108]    [c.150]   
Вакуумные аппараты и приборы химического машиностроения Издание 2 (1974) -- [ c.242 ]




ПОИСК





Смотрите так же термины и статьи:

Плавка



© 2025 chem21.info Реклама на сайте