Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Палочки глаза

    Вначале проверяют точность показаний (нулевую точку) рефрактометра так же, как это описано выше для рефрактометра Аббе. Затем на поверхность измерительной призмы стеклянной палочкой наносят несколько капель исследуемой жидкости и осторожно закрывают головку наблюдают в окно 15, чтобы исследуемая жидкость заполнила зазор между измерительной и осветительной призмами. Осветительное зеркало 13 устанавливают так, чтобы свет от источника через окно 15 поступал в осветительную призму и равномерно освещал поле зрения в таком положении зеркало закрепляют винтом 16. Все измерения проводят в белом свете. Вращая маховичок 10 и наблюдая в окуляр зрительной трубы, находят границу раздела света и тени поворачивая маховичок 11, устраняют ее окрашенность. Затем маховичком 10 точно совмещают границу раздела с перекрестием сетки и снимают отсчет по шкале показателей преломления. Индексом для отсчета служит неподвижный горизонтальный штрих сетки. Целые, десятые, сотые и тысячные доли величины показателя преломления отсчитывают по шкале, десятитысячные оценивают на глаз. [c.84]


    В целом анатомия глаза позвоночных, в частности система хрусталика и сетчатки, достаточно хорошо известна, чтобы описывать ее здесь. Рецепторы сетчатки содержат палочки и колбочки . Первые отличаются большей чувствительностью и работают при низких интенсивностях света, в то время как вторые менее чувствительны, но обладают цветовой селективностью. С помощью электронной микроскопии структура палочек и колбочек была продемонстрирована для ряда видов животных. На рнс. 8.12 приводится схематическое изображение внешних сегментов палочки и колбочки глаза американского [c.236]

    На станке для навивки кварцевых спиралей получают спирали длиной до 200—250 мм, что практически невозможно получить вручную. Для увеличения прочности спирали ее протравливают в разбавленной плавиковой кислоте в течение 3—4 ч, удаляя с ее поверхности невидимые глазом возможные посечки (мелкие трещины). Следует отметить, что спирали следует делать из палочек, изготовленных из прозрачного кварцевого стекла, так как включение даже незначительного числа малых газовых пузырей в стекло влечет за собой разрыв нити спирали. [c.289]

    Кроме того, недостаток этого витамина приводит к ухудшению ночного зрения (куриная слепота). Существуют два механизма зрения один использует колбочки сетчатки глаза, которые сосредоточены главным образом вблизи центральной ямки (центр зрения), другой — палочки сетчатки. Восприятие цвета, свойственное обычному зрению, возможно только при нормальном освещении и оно осуществляется при помощи колбочек сетчатки. Сумеречное, или ночное, зрение при очень небольшой интенсивности света осуществляется с участием палочек сетчатки глаза, которые неспособны воспринимать цвет. Было установлено, что определенный белок, зрительный пурпур, содержащийся в палочках, участвует в процессе восприятия слабого света при сумеречном освещении — он поглощает свет и активирует зрительный нерв. В колбочках содержатся три других окрашенных вещества, которые поглощают свет в трех диапазонах спектра видимого света и обеспечивают тем самым способность цветного видения. Все эти четыре вещества являются сложными белками, протеидами, в состав которых входит витамин А или одно из его производных. [c.410]

    Сетчатка человеческого глаза содержит свыше 10 плотно упакованных рецепторных клеток двух типов — палочек и колбочек. Палочки представляют собой чрезвычайно чувствительные клетки, способные реагировать всего на пять квантов света. Предназначенные для зрения в условиях слабой освещенности, они дают черно-белую картину и сконцентрированы на периферий сетчатки. Менее чувствительные колг [c.61]


    Для палочек (рис. 13-28), исследованных более детально, чем другие рецепторы сетчатки, характерен весьма интенсивный метаболизм. Палочки человеческого глаза могут функционировать в течение сотни [c.62]

    РОДОПСИН (зрительный пигмент), светочувствительный белок палочек сетчатки глаза позвоночных животных и зрительных клеток беспозвоночных. [c.272]

    Р. расположен трансмембранно в дисках палочек сетчатки глаза (рис. 1). Наиб, значит, участки вне мембраны-N- и С-концевые области молекулы (N-конец расположен внутри диска, С-конец-на внеш. стороне мембраны диска). [c.273]

    Палочки воспринимают только слабый свет, колбочки функционируют на ярком свету и ответственны за цветовое зрение. В сетчатке глаза человека около 1 млн колбочек и 1 млрд палочек. Эти фоторецепторы преобразуют энергию света в химический процесс и затем - в нервный импульс в такой последовательности свет рецептор химические реакции нервные импульсы. Чувствительность фоторецептора так высока, что уже один фотон вызывает возбуждение палочки. [c.110]

    Наши глаза не обладают такой способностью распознавать цвета при слабом освеш,ении. Предел цветового восприятия лежит гораздо выше порога восприятия света вообще. Это привело к открытию в сетчатке глаза, или, как ее называют, ретине, двух типов светочувствительных приемников (эти рецепторные клетки за свою форму получили название палочек и колбочек ). [c.75]

    В процессах зрения участвуют светочувствительные пигменты, расположенные в сетчатке глаза (ретине). Из зрительных пигментов лучше всего изучен родопсин, являющийся у млекопитающих, в том числе и у человека, фоторецептором палочек сетчатки— клеток, ответственных за сумеречное зрение. Родопсин представляет собой комплекс гликопротеина опсина с 11-1<ис-ретина-лем. Связь осуществляется посредством образования основания Шиффа (57) между альдегидной группой ретиналя и аминогруппой остатка лизина в молекуле опсина. Несмотря на то что сам по себе ретиналь бесцветен [Хмакс 383 нм (в этаноле)], образование протонированного основания Шиффа (58) сопровождается резким батохромным сдвигом, и родопсин поглощает свет в видимой области ( макс 500 нм). Родственные комплексы ретиналя или [c.538]

    Структура фоточувствительной сетчатки более подробно показана на рис. 9.2. Сетчатка содержит ряд плотноупакованных фоторецепторных клеток свет достигает их, пройдя через сеть нервных клеток. Сетчатка включает рецепторные клетки двух типов — палочки, которые в сетчатке человека имеют размер - 28 мкм в длину и 1,5 мкм в диаметре, и суживающиеся к концу более короткие колбочки. Некоторые животные имеют палочки нескольких типов существуют и двойные колбочки. Число фоторецепторных клеток в сетчатке огромно. Так, например, число палочек в сетчатке глаза крысы оценивается по крайней мере в 15 миллионов. [c.299]

    Родопсин в палочках сетчатки представляет собой пигмент, обусловливающий зрение при низких интенсивностях света. Его максимум поглощения света находится примерно при 500 нм, но с его помощью глаз способен лишь обнаруживать [c.318]

    Все соединения железа, накаленные в смеси с содой на угле перед паяльной трубкой, оставляют серые пластинки металлического железа, большей частью невидимые глазО М, но могущие быть отделенными от угля посредством магнита. Значительно точнее и изящнее удается получение металлического железа посредством нагревания пробы, как зто указано (стр. 89), на обугленной палочке с содой. [c.243]

    Важным средством наглядности, о котором незаслуженно мало говорится, хотя учитель пользуется им постоянно, является указка. Иногда это просто деревянная или сделанная из другого материала палочка, но в последнее время появились и все шире используются лазерные указки, проецирующие на нужный объект яркую красную точку лазерного луча. Преимущество в том, что он достигает любой высоты и дальности. Важно только следить, чтобы он не направлялся в глаза — это опасно. Такая указка максимально компактна (помещается в руке). [c.159]

    Светочувствительная часть глаза представляет собой мозаику реагирующих на свет клеток (фоторецепторов)— палочек и колбочек сетчатки. Палочки и колбочки находятся в непосредственном контакте с сосудистой оболочкой глаза, находящейся за глазным яблоком, а их окончания направлены в сторону, противоположную падающему свету. С помощью палочек и колбочек изменения в оптическом изображении на сетчатке преобразуются в совокупности нервных импульсов, распространяющихся от рецепторных клеток в мозг. Колбочки расположены в центральной части сетчатки и каждая их группа непосредственно связана с мозгом через внутреннюю поверхность сетчатки и зрительный нерв. Вдобавок к этим прямым соединениям в сетчатке имеется неисчислимое количество локальных проводящих нервных путей. Свет, пересекая стекловидное тело, сначала проходит через слой нервной ткани сетчатки и кровеносные сосуды и лишь затем попадает на слой палочек и колбочек. Разработчик телевизионной камеры, основываясь на подобном принципе мозаики светочувствительных элементов, вероятно, позаботился бы о монтаже соединительных проводов так, чтобы не мешать свету, падающему на фотоэлементы. Сетчатка построена по другому принципу. Нервная ткань располагается между падающим светом и слоем палочек и колбочек. Это означает, что она должна быть почти прозрачной (что п есть на самом деле), а кровеносные сосуды, которые непрозрачны, должны быть невидимыми. К этому мы возвратимся позже. [c.19]


    В настоящее время известно несколько зрительных пигментов. Наиболее изучен среди них родопсин, который присутствует в палочках глаз земных позвоночных животных и морских рыб (Я,макс 498 нм). Зрительный пигмент палочек пресноводных рыб — порфиропсин — характеризуется Хмакс 522 нм. Из колбочек сетчатки глаза цыпленка выделен иодопсин (1макс 562 нм) в колбочках кальмара и краба найден циан-опсин (Ямакс 620 нм). Очень интересен факт обнаружения пигмента типа родопсина в бактериях, который назван бактериородопсином (Ямакс 570 нм) [85]. [c.181]

    Поглощение света сетчаткой глаза вызывает ряд последовательных превращений, которые приводят к изомеризации П-цис-ретиналя, в полный транс-ретиналь, а затем к его восстановлению до витамина А совместным действием НАД-Нг, т. е. восстановленной формы дифосфопиридиннуклеотида и алкогольдегидроге-назы. Регенерация цис-форм ретиналя проходит путем окисления витамина А кислородом при помощи дыхательных ферментов. Мы видим, что энергия света используется в процессе зрительного восприятия при помощи сложного устройства палочек сетчатки, в основе которого находится каркасная структура липопротеиновых дисков. Она при этом частично аккумулируется в виде химической энергии полного трансретиналя, внося тем самым свой вклад в затрату энергии на восстановление ретиналя до витамина А. [c.136]

    Выполнение. Помешать стеклянной палочкой белый осадок гидроксида марганца —он постепенно приобретает буроватый цвет, характерный для диоксида марганца. Белый осадок Fe (ОН) 2, как уже отмечалось, на глазах превращается в темно-зеленый, а при действии окислителей— в бурый осадок Ре(ОН)з. Гидроксид кобальта (П) переходит в черную Со (ОН) з только под действием пероксида водорода, а чтобы перевести зеленоватый гидроксид N1 (П) в черный Ni(0H)3, следует применять бромную воду. Трудность окисления Со +- и N1 +-hohob связана с высоким значением третьего потенциала ионизации для этих элементов. [c.182]

    Цветное зрение ассоциируется скорее с колбочками, чем с палочками. Как мы уже отмечали, максимум поглощения иодопсина незначительно смещен в длинноволновую область по сравнению с максимумом поглощения родопсина палочек. Чувствительность колбочек меньше, чем палочек. Спектральная чувствительность глаза, как и ожидалось, сдвигается в сторону больших длин волн при переходе от тусклого к яркому свету. Позвоночные воспринимают цвет посредством системы цветного зрения, опирающейся на три основных цвета. Должны участ-сдвать три различных пигмента колбочек, поглощающие в синей, зеленой и красной областях спектра. Хотя микроспектроскопия показывает наличие ряда пигментов, выделить их не удается. Вероятно, пигменты очень сходны с родопсином палочек. Один подход к изучению структуры белков связан с исследованием кодирующих их ДНК и определением таким способом их аминокислотных последовательностей. Заряженные аминокислоты, расположенные вблизи п-системы ретиналя, изменяют энергии основного и возбужденного электронных состояний, а установленные структуры пигментов колбочек не противоречат модели, согласно которой спектр поглощения ретиналя испытывает спектральные сдвиги при взаимодействии хромофора с соседними заряженными аминокислотами. Каждая кол- [c.240]

    Отличительной особенностью хронической интоксикации хлористым метилом является поражение зрительного аипарата . Уже через 2 мес. воздейсшия хлористого метила на уровне Lim h у кроликов развилась гиперемия слизистой оболочки век и глазного яблока, особенно заметная в области глазной щели. Картина глазного дна характеризовалась гиперемией, отеком диска зрительного нерва на месте выхода сосудов, умеренной гиперемией соска. При патоморфологическом исследовании тканей глаз кроликов найдены плазморрагии различных размеров. Сосуды цилиарного типа полнокровны. В слое палочек и колбочек имеется разреженность. Структурных изменений в зрительном нерве не выявлено.  [c.179]

    РОДОПСИН ( зрительный пурпур ), хромопротеид, содержащийся в палочках сетчатки глаза и ответственный за возбуждение зрит, нерва под действием света. Состоит иа апобелка (опсина) и присоединенного к нему 11-чггс-ретина-ля (альдегида, образующегося из ретинола — витамина А), к-рый при поглощении света изомеризуется в li-mpan -pe-тиналь одновременно возбуждается зрит. нерв. Обратный переход транс-изомера в ггс-изомер в результате ферментативной р-ции и присоединение последнего к опсину приводят к регенерации Р. Галофильные бактерии содержат аналогичный белок (бактериородопсин), также выполняющий ф-цию поглощения световой энергии. [c.510]

    Определив на-глаз вес воды в дестиллате, прибавляют половинное кoJ1lIчe твo едкого кали в палочках так, чтобы он расгео-рялся медленно. При растворении едкого кали колба должна оставаться холодной. Выделяются пузырьки аммиака. Когда все едкое кали растворится, амин отделяют и сушат несколько часов твердым, едким иатром, взятым в виде свежераздробленных мелких кусков. После этого амин фильтруют в перегонную колбу и перегоняют при атмосферном давлении. Если продукт был предварительно хорошо 12  [c.179]

    К концу стеклянной палочки прикрепите кусочком воска маленький, незаметный кристаллик гипосульфита (воск слегка расплавьте, нагрев его над таменем). На глазах у зрите-ией быстро опустите палочку в нижний слой. Концентрация соли столь высока, что тотчас вокруг криста/ьгика нагромоздится множество новых кристаллов, образуя подобие цветка. А в среднем слое "чужое" вещество вокруг кристалла гипосульфита кристаллизоваться пе будет. [c.124]

    На стеклянной трубке делают один (желательно глубокий) надрез перпендикулярно ее оси. Надрезать трубку по всему периметру нет необходимости, для этого достаточно одной четверти окружности. Многократное надпиливание нецелесообразно, так как оно только ослабляет действие первого надреза. Разламывать трубку рекомендуется следующим образом трубку растягивают за оба конца и одновременно осторожно сгибают в сторону, противоположную надрезу. В целях безопасности части трубки, которые держат в руках, обертывают полотенцем и ломают ее возмож-но дальше от глаз. Таким способом можно переламывать трубки диаметром до 8—10 мм. Для разрезания трубок большего диаметра можно использовать раскаленную стеклянную палочку, гнутую пpoвoлoкv или проволоч- [c.11]

    Параметры питьевой воды делятся на три группы органолептические свойства, показатели бак-териапьного и санитарно-химического загрязнения. Про органолептику я уже говорил — это простейшие оценки запаха, вкуса, цвета и мутности, которые мы, потребители, можем, в принципе, выполнить сами. ПДК на бактериальное загрязнение выглядит исключительно простым нормативы ЕС, США и ВОЗ определяют что его вообще не должью быть. Российский стандарт дает такие цифры не более ста микроорганизмов на один кубический сантиметр и не более трех бактерий типа кишечных палочек в одном литре воды. По сути дела, отечественные и зарубежные требования одинаковы, если учесть ничтожный размер бактерий и вирусов и практическую невозможность убедиться, что они Полностью и с гарантией отсутствуют в воде. Таким образом, мы сосредоточимся на химии, которую На глаз, без трудоемких анализов, не определить. В табл. 3.2 представлены ПДК для легких и тяжелых [c.69]

    Более подробно выяснено значение витамина А в процессе свето-ощущения. В этом важном физиологическом процессе большую роль играет особый хромолипопротеин—сложный белок родопсин, или зрительный пурпур, являющийся основным светочувствительным пигментом сетчатки, в частности палочек, занимающих ее периферическую часть. Установлено, что родопсин состоит из липопротеина опсина и простетической группы, представленной альдегидом витамина А (ретиналь) связь между ними осуществляется через альдегидную группу витамина и свободную -КН,-группу лизина молекулы белка с образованием шиффова основания. На свету родопсин расщепляется на белок опсин и ретиналь последний подвергается серии конформационных изменений и превращению в транс-форму. С этими превращениями каким-то образом связана трансформация энергии световых лучей в зрительное возбуждение—процесс, молекулярный механизм которого до сих пор остается загадкой. В темноте происходит обратный процесс—синтез родопсина, требующий наличия активной формы альдегида—11-г<ис-ретиналя, который может синтезироваться из -ретинола, или транс-ретиналя, или транс-формы витамина А при участии двух специфических ферментов—дегидрогеназы и изомеразы. Более подробно цикл превращений родопсина в сетчатке глаза на свету и в темноте можно представить в виде схемы  [c.211]

    Внутри рецепторных мембран находится поглощающий свет фоточувствительный пигмент, который играет основную роль в первичном улавливании света. Обычно у животных имеется несколько зрительных пигментов (у человека, например, четыре) причем в палочках и колбочках обнаруживаются разные пигменты. Каждый индивидуальный зрительный пигмент характеризуется своей величиной Ятах. Эти величины для разных зрительных пигментов находятся в диапазоне между 345 гг 620 нм, что обеспечивает максимальную чувствительность глаза к свету в этом диапазоне. Все известные зрительные пигменты (а их довольно много) имеют очень сходную структуру. Молекула любого пигмента представляет собой липопротеин, связанный с небольшим хромофором. Во всем животном царстве найдены лишь две очень сходные хромофорные группы. Небольшие различия в структуре и конформации липопротеинов (опсинов) лежат в основе значительных вариаций величин ,тах. [c.303]

    Механизмы трансформации оптического изображения на сетчатке в нейральное изображение, сообщаемое мозгу, весьма сложны. В сетчатке происходит адаптация к различиям в интенсив-юности и в спектральном составе света, восприятие объемного изображения и движения видимого объекта. Были проведены ис-<жедования импульсов, возникающих в оптических нервах краба и позвоночных. Глаз краба содержит множество рецепторов, именуемых омматидиями, похожих на палочки. Удалось изучить импульсы, создаваемые отдельными омматидиями в соответствующих отдельных аксонах. В темноте распространяются редкие. периодические импульсы. При освещении с пороговой интенсивностью возникают дополнительные импульсы. Если интенсивность сильно превышает пороговую, то в момент освещения возникает короткая последовательность частых импульсов. Затем частота уменьшается, но остается существенно большей, чем темновая. При выключении света появляется новая пачка частых импульсов, их частота постепенно уменьшается до темновой. У позвоночных аксоны сильнее реагируют на изменения освещенности, чем на непрерывное освещение. Наблюдается подавление импульсов при сильном освещении. Функцией сетчатки является сложное, интегрирующее нервное взаимодействие, име-юшее характер вычислительной работы. В этом смысле сетчатка подобна ЭВМ. [c.466]

    Фотохимическая изомеризация имеет определяющее значение для процессов зрения. Палочки сетчатой оболочки (Retina) глаза содержат (112)-ретиналь, который связан с протеином опсином. Падающий свет вызывает изомеризацию в ( )-изомерный ретиналь (ретинен)  [c.769]

    Для. производства какого-либо восстановления смешивают небольшое количество исследуемого вещества с равным ко-личесгво.м прокаленной соды и, прибавив каплю расплавленной соды, при помощи перочинного ножа приготовляют однообразную пасту. Прикоснувшись нагретой угольной палочкой к пасте, ее переносят на кончик палочки. Затем пробу нагревают сначала в нижнем окислительном пламени до ее плавления, после чего ее переносят в нижнее восстановительное пламя происходит тотчас сильное вскипание сплавленной массы, обусловленное выделением образовавшейся угольной кислоты. Восстановление закончено, как только масса начнет спокойно плавиться. После охлаждения во внутреннем конусе ее удаляют из пламени. Теперь металл находится на само.м кончике палочки, сосредоточенный в одном пункте. Отламывают кончик палочки, бросают в агатовую ступку, обливают небольшим количество.м воды и раздавливают пестиком. Излишек соды растворяется, уголь частью 1пла1вает на поверхности воды, а металл как более тяжелый падает на дно. Представляет ли собой металл железо, никель или кобальт, глазом распознать нельзя, но его можно извлечь лезвие.м намагниченного ножа, на котором он повиснет в виде бородки, большей частью еще с примесью угля. Высушенную посредством осторожного нагревания лезвия бородку снимают большим и указательны.м пальцами. К приставшему к пальцу металлу снова прикасаются намагниченным ножичком, и теперь на клинке повиснет уже только чистый металл. Последний переносят на полоску фильтровальной бумаги шириной в 3—4 /ИЛ1 и длиной 50 так, чтобы он был возможно ближе к одно.му из концов полоски. Посредством капиллярной трубки к нему прибавляют одну каплю соляной и столько же азотной кислоты и нагревают бумагу над пла.менем до исчезновения черного пятна (металла), после чего приступают к окончательному испытанию. [c.90]

Рис. 1.8, Трехслойное строение сетчатки глаза палочки и колбочки, биполярные и ганглионарные клетки. Имеется также промежуточная сеть горизонтальных и амакриновых клеток. На этой схеме не отражена конвергенция, на каждые 100 палочек или колбочек имеется только одна ганглионарная клетка. На изображенном здесь уровне происходит уже значительная интеграция и обработка световых импульсов. (Воспроизводится с разрешения Pro eedings Рис. 1.8, <a href="/info/1281589">Трехслойное строение</a> <a href="/info/1435776">сетчатки глаза палочки</a> и колбочки, биполярные и <a href="/info/265780">ганглионарные клетки</a>. Имеется <a href="/info/1097787">также промежуточная</a> сеть горизонтальных и <a href="/info/265712">амакриновых</a> клеток. На этой схеме не отражена конвергенция, на каждые 100 палочек или колбочек имеется только одна <a href="/info/265780">ганглионарная клетка</a>. На изображенном здесь уровне происходит уже значительная интеграция и обработка световых импульсов. (Воспроизводится с разрешения Pro eedings
    Зрительный процесс начинается с поглощения света хромофорами палочек и колбочек сетчатки глаза. Происходящие при этом молекулярные события описываются циклом Вальда — последовательностью реакций обесцвечивания и регенерации родопсина. Родопсин состоит из 11-цис-ретиналя, образующего основание Шиффа с опсином — белком с Л141000. Свет вызывает изомеризацию 11-г с-ретиналя до полностью-транс-рети- [c.33]

    Роль ретинола в процессе зрительного восприятия изучена достаточно хорошо (рис. 14.5). В организме ой окисляется в альдегид 11-гра с-ретиналь, который под действием фермента ре-тинальизомеразы превращается в 11-г ыс-ретиналь, а затем связывается с белком палочек сетчатки опсином в иминосое-динение с образованием светочувствительного пигмента родопсина. При поглощении света в результате фотоизомеризации ретинальный компонент родопсина переходит в 11-гране-ретиналь, его конформация существенно изменяется, и он отделяется от опсина. Эта реакция служит пусковым механизмом, обеспечивающим возбуждение палочек сетчатки глаза. [c.478]


Смотреть страницы где упоминается термин Палочки глаза : [c.135]    [c.215]    [c.238]    [c.329]    [c.435]    [c.338]    [c.343]    [c.24]    [c.12]    [c.310]    [c.469]    [c.10]    [c.14]    [c.15]    [c.20]    [c.21]   
Биология Том3 Изд3 (2004) -- [ c.315 , c.319 , c.324 , c.326 ]




ПОИСК





Смотрите так же термины и статьи:

Палочки



© 2025 chem21.info Реклама на сайте