Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кремний, влияние его содержания молибден

    К числу наиболее перспективных путей повышения коррозионной стойкости аустенитных хромоникелевых сталей к межкристаллитной коррозии относится способ дополнительного легирования этих сталей такими элементами, как кремний, азот и молибден. В табл. 1.4.27 собраны результаты исследований влияния этих элементов на коррозионную стойкость хромоникелевых сталей. Пределы изменения концентрации каждого из элементов в таблице определялись тремя уровнями, которые обозначены знаками - — минимальное содержание, о — среднее содержание и + — максимальное содержание. Абсолютные интервалы легирования составили (масс. %) для молибдена — 1,0-4,0 азота — 0,18-0,45 кремния — 0,58-5,0. Содержание углерода варьировалось в пределах от 0,03 до 0,11 %, хрома — 17,9-18,1 % серы — 0,011-0,012 % фосфора [c.86]


    Содержание углерода в стали, которое превышает его количество, соответствуюш,ее условию растворимости в феррите, сильно способствует обеднению хромом феррита, связывая хром в карбиды, и таким путем препятствует образованию а-фазы. Азот не оказывает влияния на температуру образования а-фазы, тогда как кремний и молибден сильно способствуют ее выделению из твердого раствора. [c.158]

    Жаростойкость тантала повышают легированием никелем, молибденом (до 15%), вольфрамом (до 50%) (рис. 14.21). Добавки V и ЫЬ до 15 % приводят к двукратному повышению жаростойкости тантала. Эффективны добавки металлов 1У-а группы. Положительное влияние циркония усиливается при повышении температуры до 1100 °С, Сплавы И —Та, богатые гафнием, устойчивы кратковременно к окислению при 2000 °С. Наиболее высокой жаростойкостью обладают тройные и многокомпонентные сплавы тантала (см. табл. 14,9). Тантал, легированный хромом и никелем (суммарное.содержание Сг, N1 15 %), окисляется со скоростью, меньшей, чем хром. Наибольшей жаростойкостью в этой системе обладает сплав Та—7,5 Сг—5Ы1. Наивысшей жаростойкостью обладают сплавы тантал - металл 1У-а группы, легированные хромом, алюминием, кремнием, бериллием, молибденом. [c.430]

    Действительно, теперь имеется метод получения таких чистых металлов — зонная плавка. Первое применение этого метода не относилось к металлам в узком смысле слова. Оказалось, что электропроводность германия и кремния практически полностью опр-еделяется наличием примесей. При помощи зонной плавки электропроводность постепенно уменьшали при возрастающей степени чистоты, и лишь при концентрации примесей 10 атомов проводимость упала до такой степени, что образцы можно было использовать для изготовления транзисторов. Оказалось возможным достигнуть степени чистоты германия 10, не принимая во внимание содержание кислорода. Но оказалось также, что в этих образцах кислород может находиться в количествах, еще легко определяемых аналитически, и, тем не менее, не оказывает заметного влияния на электрические свойства. Зонная плавка является столь эффективным методом именно потому, что ее можно провести таким образом, чтобы весьма чистый металл не соприкасался с другими веществами. Этот метод уже успешно применен к таким тугоплавким металлам, как титан и молибден, находившимся в виде свободно расположенных образцов. [c.350]

    Применение стали различного состава, отличающейся по содержанию углерода и специальных присадок (хром хром и иикель хром, никель и молибден никель кремний ванадий и хром), не оказывает существенного влияния на снижение катодного потенциала или приводит к его повышению. [c.34]


    Влияние примесей. Примеси значительно влияют на свойства сталей. Кремний повышает прочность, упругость и магнитную проницаемость сталей. Например, стали с содержанием кремния до 2% являются хорошим материалом для рессор, а стали с содержанием кремния до 4% и углерода до 0,1% идут на изготовление магнитов. Марганец увеличивает твердость, прочность, упругость и способствует самозакаливаемости стали. Хром увеличивает прочность, твердость, упругость, износостойкость от трения, сопротивление коррозии, а также способствует самозакаливаемости стали и улучшает магнитные свойства ее. Никель увеличивает вязкость, прочность, сопротивление коррозии, способствует прокаливаемости и самозакаливаемости стали. Сочетание хрома с никелем придает сталям очень высокие механические свойства. Вольфрам повышает прочность, твердость, способствует прокаливаемости и самозакаливаемости, а также придает стали стойкость при высоких температурах. Например, режущие инструменты из стали с содержанием вольфрама свыше 5% при нагревании до 600—700°С не теряют режущие способности. Ванадий, при содержании его до 0,7%, повышает прочность, упругость, твердость и вязкость стали. Молибден повышает прочность, твердость, упругость, прокаливаемость и самозакаливаемость стали. Алюминий при содержании до 1,0—2,5% позволяет получать очень высокую твердость поверхности стали после нитрирования (насыщения поверхности стали азотом при температуре 470—600°). Медь и мышьяк увеличивают хрупкость стали. [c.13]

    ВОН кислоты в слое улучшает его стойкость. На рис. 1.93 показано влияние содержания кремния в сплаве на состав слоя и на коррозионные потери сплава в 10% растворе хлорного железа. На сплавах, содержащих молибден, последний выделяется в форме окисла. Повышенная стойкость этих сплавов основана на совместном действии кремневой кислоты и молибдена [281, 282]. В толстых слоях (300—500 А), которые образуются под действием воЗ духа при нагревании, хром содержится в повышенном, а никель — в уменьшенном количествах. Эти слои являются кристалличс скими, показывают цвета побежалости и построены по типу шпинели [283]. Скорость их роста лимитируется скоростью движения ионов металла и кислорода в слое. [c.103]

    В составе малоуглеродистой стали обычно присутствуют углерод, марганец, кремний, сера, фосфор, кислород, азот, водород, а также могут быть добавки легирующих элементов, используемых в качестве раскислителей хром, алюминий, бор, ванадий, титан, молибден. Содержание каждого из указанных элементов в малоуглеродистой стали составляет десятые либо сотые доли процента. Между тем, их влияние на склонностъ стали к хрупкости при понижении температуры может оказаться значительным, хотя удельный вес влияния каждого элемента определить весьма трудно. Поэтому исследователи рассматривают свойства чистых сплавов а-желе-за с регулируемыми добавками различных элементов [48], а промышленные стали оценивают с применением методов статистического анализа [49]. [c.39]

    Свариваемость легированных сталей зависит от содержания и концентрации легирующих компонентов. О влиянии кремния и марганца было сказано выше. Хром при содержании его в стали до 0,9% не оказывает влияния на качество сварки, при повышении его содержания хром образует оксиды хрома С2О3, которые резко повышают твердость стали. Никель не снижает качества сварных швов. Молибден при сварке ухудшает качество сварного шва, легко выгорает, способствует образованию трещин. Ванадий ухудшает свариваемость, так как способствует образованию закалочных структур в металле шва и околошовной зоны. Легко выгорает и окисляется. Вольфрам в процессе сварки может легко окисляться и выгорать. Титан и ниобий способствуют карбидообразованию и поэтому препятствуют образованию карбидов хрома. Ниобий способствует образованию горячих трещин. [c.393]

    Позднее Н. Родин [74] изучил при помощи мнкрохимргаеской методики состав металлических компонентов пассивных пленок, отделенных от поверхности нержавеющих сталей. Пассивные пленки после отделения высушивали без доступа воздуха, а затем анализировали. Основные результаты исследований показали, что в пассивных пленках наблюдается понижение содержания Р е по сравнению с его содержанием в силаве. Значительно возрастает (в 5—10 раз) содержание таких легирующих элементов, как кремний, молибден. Оказалось, что состав пассивных пленок зависит не только от состава сплава, но и от состава коррозионной среды и времени выдержки в коррозионном растворе. На рис. 24 приведены данные, показывающие влияние состава сплава на содержание легирующих элементов в пленке после пассивации образцов из экспериментальных сталей следующего состава 0,02% С, 17% Сг, 13% N1, 2% Мо с переменным количеством 31 от [c.40]

    Удалось установить [74] определенную связь между составом нленки и ее защитными свойствами. Указанные выше стали подвергали коррозионным испытаниям в 10%-ном растворе РеВгд при 25° С в течение 150 час. Соответствующие данные о составе пассивных пленок после испытаний и скорости коррозии приведены на рис. 25. Можно отметить интересные изменения в составе пленки примерно 25% 31 в пассивной пленке в процессе коррозионных испытаний заменяются Мо. В результате создается поверхность, обладающая высокими защитными свойствами. Наибольшее повышение содержания кремния в пленке и наибольшая скорость обогащения пленок молибденом в процессе коррозии наблюдаются у сплавов, содержащих 1—2% 31, и это количество кремния будет самым эффективным. Дальнейшее повышение содержания 31 оказывает значительно меньшее влияние на улучшение коррозионной стойкости сплава, что подтверждается коррозионными данными. Состав нленки для сплава с 2% 31 после [c.40]


    СВ оказывают заметное влияние на св-ва стали. Так, марганец и кремний (при некоторых содержаниях) упрочняют сталь и понижают ее пластичность. Сера и кислород способствуют красноломкости. Кроме того, сера снижает усталостную проч-ность и коррозионную стойкость. Фосфор охрупчивает сталь при низких т-рах. Сера и фосфор улучшают обрабатываемость стали резанием, вследствие чего их вводят в автоматные стали. Наличие в стали азота приводит к деформационному упрочнению холоднодеформированной стали в процессе последующей выдержки при т-рах от комнатной до 250—300° С и к синеломкости малоуглеродистой стали при т-ре 150—300° С. Водород способствует охрупчиванию стали и образованию флокенов. В зависимости от содержания серы и фосфора различают углеродистые стали обыкновенного качества (до 0,055% 8 в 0,045% Р), качественные (не более 0,035% каждого элемента) и высококачественные (не более 0,025% каждого элемента). Из углеродистых сталей обыкновенного качества изготовляют малонагруженные изделия, а также арматуру для железобетонных конструкций (см. Железобетон, Строительная сталь), из качественных (см. Качественная сталь) и высококачественных углеродистых сталей — высоконагруженные детали машин и различные инструменты. Физико-химические и мех. св-ва сталей улучшают легированием хромом, никелем, молибденом, ванадием, титаном, марганцем, кремнием, вольфрамом, кобальтом, бором и др. элементами. Легированные стали превосходят углеродистые комплексом мех. св-в (конструкционная и инструментальная стали) и специфическими св-вами, к-рых у углеродистых сталей нет или они недостаточно высоки (см. Быстрорежущая сталь, Износостойкая сталь, Жаропрочная сталь, Корроаионност,ойкая сталь. Магнитная сталь, Электротехническая сталь). Св-ва большинства углеродистых и легированных сталей улучшают термической обработкой, химико-термической обработкой и термомеханической обработкой. В чугунах, в отличие от сталей, кристаллизующихся, как правило, [c.445]

    Для сталей мартенситного класса с различным содержанием углерода, подвергнутых закалке, характерна та же закономерность, что и для перлитных сталей. Так, потери массы образца стали 12X13, содержащей 0,14% С, после закалки значительно больше потерь массы образца стали Х10С2М, содержащей 0,38% С. Кроме того, положительное влияние на эрозионную стойкость последней оказывают кремний и молибден. Эти данные показывают, что оптимальное содержание углерода в стали, при котором можно получить наибольшее повышение эрозионной стойкости после термической обработки, определяется количеством легирующего элемента и его природой. [c.138]

    Сравнительные исследования 26 марок углеродистых и низколегированных сталей в имитирующем условия газовой скважины растворе Na l-t- Hs OOH + HsS показали наибольшую стойкость у ферритной структуры с относительно мелкими равномерно распределенными сфероидальными карбидами, образующейся после отпуска мартенсита при высоких температурах [160]. С уменьшением величины зерна и переходом от закаленного состояния к улучшенному (т. е. после закалки с высоким отпуском) охрупчивание снижается, а с повышением количества пластинчатого перлита — возрастает. На стойкость к сероводородному растрескиванию при неизменной структуре стали практически заметное влияние оказывает изменение содержания серы (0,002—0,35%) и фосфора (0,004—0,59%). Остальные элементы марганец (0,76—2,5%), никель (0,2—3%), хром (0,03—6,25%), кремний (0,05—2,9%), молибден (0,01—1,85%) не оказывали существенного влияния (если структура не изменялась термической обработкой). Наиболее серьезное влияние оказывала сера — введение уже 0,03% S вызывало заметное усиление охрупчивания при коррозии в сероводородной среде. Это объяснено увеличением количества дефектных участков — сульфидных включений. Показано, что расслоение металла под действием водорода локализуется в местах скопления сульфидных включений. [c.66]

    Серебро осаждается висмутиолом в слабоаммиачном растворе в виде желтого, хорошо отделяющегося фильтрованием осадка, имеющего состав Ag( gH5N2Sз) с теоретическим содержанием серебра 32,38 %. Комплексон совершенно не оказывает влияния на осаждение серебра. По Малинеку [46], можно этим простым способом отделить серебро от других катионов. Сурьма, олово, титан и бериллий следует замаскировать добавлением винной или лимонной кислоты. Ион уранила маскируют тироном, который, однако, в большом избытке приводит к неполному осаждению серебра. Мышьяк, вольфрам и молибден не мешают определению даже в отсутствие комплексона. Согласно автору, этот метод весьма пригоден для определения серебра, например в шлаке, остающемся после выработки серебра, когда вследствие большого содержания двуокиси кремния нельзя пользоваться методом купелирования. [c.143]

    Результаты измерений критической плотности тока пассивации у сталей от 1Х18Н9 до 1Х18Н23 (см. рис. 5) показывают, что с возрастанием содержания никеля постепенно увеличивается и критическая плотность тока пассивации. Молибден в сталях типа Х18Н12М уже при содержании ниже 0,5% очень существенно снижает критическую плотность тока пассивации. Его влияние плавно возрастает с увеличением содержания до исследованных 5,1% (рис. 6), при этом величина /кор. становится существенно ниже величин, устанавливающихся в присутствии ионов хлорида у стандартных типов нержавеющих сталей. Большое влияние на снижение критической плотности тока пассивации имеет и хром при содержании в пределах от 12 до 16% (рис. 7), а также кремний [63, 173]. Так как в пассивном состоянии у нержавеющих сталей наблюдается чаще всего язвенная коррозия, можно во многих случаях величину У ор. п (при потенциале Ец = 0,59 в) считать мерилом стойкости к язвенной коррозии. [c.22]

    Влияние чистоты металла на коррозию в неокисляющих кислотах. Широко распространено мнение, что с уменьшением содержания в металле при.месей стойкость коррозии (повышается. Для случаев коррозии с выделением водорода это мнение имеет основания распространение такого мнения на другие типы коррозии совершенно не обосновано. Даже для случаев коррозии с выделением водорода имеются исключения из указанного правила. Коррозия металла, уже содержащего следы примесей, не всегда увеличивается от прибавки других элементов прибавка ртути к цинку невысокой чистоты уменьшает коррозию его в кислотах за счет повышения перенапряжения. Эндо изучая коррозию железа в кислотах, определял влияние многочисленных добавок к металлу, включая углерод, кремний, серу, фосфор, марганец, кобальт, никель, хром, ванадий, молибден, вольфрам, титан и медь результаты оказались сложными, — многие элементы увеличивают коррозию при одних концентрациях и уменьшают ее при других. [c.527]


Смотреть страницы где упоминается термин Кремний, влияние его содержания молибден: [c.58]    [c.682]    [c.56]    [c.71]    [c.67]   
Коррозия металлов Книга 1,2 (1952) -- [ c.378 ]

Коррозия металлов Книга 2 (1952) -- [ c.378 ]




ПОИСК





Смотрите так же термины и статьи:

Кремний, влияние его содержания

Молибден, влияние его содержания



© 2025 chem21.info Реклама на сайте