Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цинковые покрытия коррозия в атмосфере

    Скорость коррозии цинкового покрытия в атмосфере промышленных объектов составляет около 15 мкм/год, в сельской местности — 3 мкм/год. [c.83]

    Эксплуатационный срок службы цинковых покрытий в атмосферных условиях пропорционален их толщине. Скорость коррозии цинковых покрытий в атмосфере промышленных районов составляет примерно 0,094 — 0,1 г/м -24 ч, что соответствует 0,0048 — 0,005 мм/год в морской атмосфере она равна 0,026 — 0,037 г/м -24 ч или 0,0013 — 0,0019 мм/год [c.113]


    Этим объясняется непригодность цинка в качестве декоративного покрытия. Цинк имеет более отрицательный потенциал, чем железо (Ф2п/2п2+ = б), поэтому цинковое покрытие обеспечивает электрохимическую защиту черных металлов от коррозии. Скорость коррозии цинковых покрытий зависит от условий их эксплуатации. Так, по данным Института физической химии АН СССР, в средних широтах скорость коррозии цинкового покрытия составляет около 0,5—0,6 мк в год для сельской местности и 3,6 мк для промышленного района с атмосферой, загрязненной ЗОз, 50з, СО2 и другими активными агентами. В условиях высокой влажности воздуха при значительных колебаниях температуры с обильным выпадением росы (в тропических широтах) скорость коррозии сильно возрастает, и применение цинковых покрытий нецелесообразно. Морская вода также быстро разрушает цинковое покрытие. [c.169]

    В атмосфере сухого воздуха на поверхности цинкового покрытия образуется слой окиси цинка, переходящий в присутствии влаги в гидроокись, а затем в карбонаты и сульфаты. Результаты рентгеноструктурно-гй анализа показали, что преобладающими компонентами в продуктах коррозии цинка являются соединения типа [c.53]

    Скорость коррозии цинкового покрытия в чистой атмосфере растет с увеличением продолжительности испытания тем значительнее, чем выше влажность атмос- зависимость устойчивости феры. При толщине цинкового слоя ленки и скорости коррозии цинка 39 мкм скорость коррозии составляет от pH среды [c.53]

Таблица 12. Скорость коррозии цинкового покрытия в различных атмосферах Таблица 12. Скорость <a href="/info/641787">коррозии цинкового покрытия</a> в различных атмосферах
    Цинк стоек к коррозии в нейтральных средах, поэтому он обеспечивает надежную защиту стали от атмосферной коррозии, в природных водах и нейтральных растворах. Коррозионная стойкость цинка связана с формированием на его поверхности малорастворимых продуктов. Уменьшение срока службы цинковых покрытий в сильно загрязненной промышленной атмосфере объясняется повышенной кислотностью конденсирующейся влаги. [c.38]

    Под воздействием атмосферы на поверхности покрытия образуется слой карбоната, который замедляет дальнейшую коррозию цинка. Скорость коррозии цинка в атмосфере примерно в 20 раз меньше скорости коррозии стали. Для внешней атмосферы целесообразно цинковое покрытие массой 400—500 г-м- , т. е. толщиной 57—71 мкм, или цинковое покрытие массой 350 г-м , т. е. толщиной примерно 50 мкм, с последующим нанесением лакокрасочного покрытия или хроматированием. Толщина цинкового покрытия, на которое воздействует проточная вода, должна составлять примерно 130 мкм, т. е. иметь массу около-1000 гм-2 [15]. [c.76]


    Они растворяются и удаляются с поверхности дождем, приводя к дальнейшей свободной коррозии цинка. В атмосфере сельской местности и морских условиях основными продуктами коррозии являются карбонаты и хлориды. Эти соли менее растворимы, чем сульфаты это и обусловливает некоторое снижение скорости коррозии. Образование слаборастворимых гидрокарбонатов и хлоридов свидетельствует об ограниченной степени разрушения анодного цинкового покрытия, что позволяет продлить срок службы стали, обработанной горячим цинкованием, в тех случаях, когда на нее воздействуют природные воды. [c.72]

    Исследование защитных пленок на алюминии (99,5%), анодированном на толщину 10 мкм, показало, что в течение 9 месяцев пленка как на воздухе, так и в атмосферном павильоне сохранилась в хорошем состоянии. Однако уже через год поверхность образцов на воздухе была поражена на 30%, а через 2 года — на 60%. В павильоне на образцах были обнаружены отдельные очаги коррозии серого цвета. Хроматированное цинковое покрытие толщиной 7 мкм в открытой атмосфере начинает корродировать через год, а через 2 года около 20% поверхности подвержено коррозии. В павильоне жалюзийном коррозия цинкового покрытия протекает медленнее (через 6 месяцев — около 2% поверхности поражено коррозией, а через два года — около 3%). [c.78]

    Прекрасной коррозионной стойкостью цинка в морских атмосферах объясняются и высокие защитные свойства цинковых покрытий на железе. В коррозионных испытаниях в Ки-Уэсте, где условия очень агрессивны, на оцинкованных с двух сторон стальных пластинах (плотность цинкового покрытия от 4,6 до 7,9 г/дм ) после 32-летней экспозиции не наблюдалось ржавчины. Установившаяся скорость коррозии цинкового покрытия была такова, что при его плотности порядка 6 г/дм (это соответствует толщине слоя цинка около 90 мкм) покрытия должно хватить на 79 лет [122]. В местах, где оцинкованные поверхности тюд-вергаются ударному воздействию прибоя, скорости коррозии ципка должны быть выше. [c.166]

    В условиях тропиков цинковое покрытие нестойко. Особо значительна скорость коррозии 2п в атмосфере промышленного города. [c.161]

    Высокая стойкость цинка в условиях атмосферной коррозии объясняется образованием плотного защитного слоя гидроксида цинка. Эффективность антикоррозионной защиты зависит от климатических условий, прежде всего от количества осадков и содержания в атмосфере диоксида серы. Годовое уменьшение защитного цинкового покрытия в среднем составляет примерно 1 мкм для морского и материкового климата и [c.135]

    При такой коррозии с цинковых пассивированных поверхностей хроматы постепенно исчезают, и на металле формируются коррозионные очаги, содержащие карбонаты и гидроокись цинка. Затем при действии атмосферы они превращаются в окись цинка (белая ржавчина), в результате чего разрушается цинковое покрытие и начинается коррозия стальной подложки. Для предотвращения нитевидной коррозии алюминий, цинк и другие металлы рекомендуется покрывать акри-латными красками. [c.9]

    Алюминий — цинк. Соединение алюминия с цинком, несмотря на значительную разность потенциалов между этими металлами, вполне допустимо. Объясняется это, очевидно, значительной поляризуемостью электродов. Цинк в такой комбинации чаще всего является анодом, хотя возможны и обратные случаи. Контактирование оцинкованных деталей с частями из алюминиевых сплавов никогда не приводило к серьезным осложнениям. В относительно агрессивных атмосферах цинковое покрытие может быть разрушено и оголенная часть стали будет усиливать коррозию алюминия. В таких случаях следует, по мнению Годарда [52], контакт дополнительно окрасить. [c.136]

    В чистой и морской атмосферах цинк достаточно стоек, так как покрывается слоем продуктов коррозии из гидратов и основных углекислых солей цинка. В загрязненных кислыми примесями (ЗОг, 50з, НС1) индустриальных атмосферах устойчивость цинка и цинковых покрытий сильно снижается. Это определяется, с одной стороны, неустойчивостью цинка в кислых растворах, с другой, — сильной гиг- [c.293]

    Исследования Е. В. Ганушкиной [2] показали, что ускоренные испытания цинковых покрытий во влажной атмосфере и в камере при распылении раствора хлористого натрия не отражают поведения металлических покрытий в естественных условиях главным образом потому, что в последнем случае образуются растворимые продукты коррозии, а при ускоренных испытаниях — защитные слои продуктов коррозии. [c.171]

    Рекомендация указанного метода определения устойчивости цинкового покрытия основывается па выборе такой концентрации кислоты для обрызгивания, при которой скорость коррозии соответствовала бы определенному сроку испытания в естественных условиях. На наш взгляд, этот метод не совсем оправдан, ибо серная кислота должна сильно изменять характер коррозионного процесса. Цинк в атмосферных условиях корродирует, как правило, с кислородной деполяризацией. Изменение характера деполяризации катодного процесса может исказить результаты. Применение кислых электролитов при ускоренных испытаниях оправдано в тех случаях, когда изделие работает в сильно-загрязненной промышленной атмосфере, где конденсирующийся на поверхности покрытия электролит приобретает вследствие абсорбции сернистого газа слабокислую реакцию. [c.172]


    В условиях промышленной атмосферы [23] покрытия сплавом d—Zn с 10% Zn несколько лучше защищают сталь от коррозии, чем цинковые покрытия, и значительно лучше, чем кадмиевые. [c.193]

    Цинк является электроотрицательным активным металлом, поэтому цинковые покрытия электрохимически защищают железо и сталь от коррозии. В коррозионной среде образуется гальваническая пара цинк — железо, в которой железо является катодом, и поэтому не разрушается, пока есть слой цинка. При наличии пор и оголенных мест в покрытии происходит разрушение цинка. Защитная способность цинкового покрытия пропорциональна его толщине. Коррозия цинка может замедляться, если поверхность его покрывается нерастворимыми продуктами коррозии. Скорость коррозии в атмосфере зависит от наличия влаги и промышленных загрязнений. [c.145]

    Химические свойства кадмия аналогичны свойствам цинка, однако он более устойчив в кислых, нейтральных и щелочных растворах. В паре е железом кадмий также является анодом, и поэтому кадмий относится к категории защитных покрытий, особенно в условиях воздействия хлоридов и сульфатов (морская атмосфера). На поверхности кадмия в атмосферных условиях образуются продукты его коррозии в виде пленки толщиной 5—10 мк 1, которая, как и в случае цинкового покрытия, несколько тормозит коррозионный процесс. Проведенные исследования коррозионной устойчивости кадмиевых покрытий в различных районах показали, что они менее устойчивее цинковых (за исключением морской атмосферы). Кадмий быстро разрушается при контакте о изделиями, содержащими олифу, топливные и смазочные материалы, а также с пластмассовыми деталями. При выборе покрытия следует учитывать также высокую 102 [c.95]

    Цинковые покрытия широко применяются для защиты изделий из черных металлов от коррозии в различных климатических зонах и в атмосфере, загрязненной промышленными газами, для защиты от непосредственного влияния [c.159]

    Гальваническое цинкование применяется как защитное покрытие для предохранения стальных изделий от коррозии в обычных атмосферных условиях, в условиях повышенной влажности и при работе деталей в пресной воде. В гальванической паре цинк—железо слой цинка является анодом по отношению к железу и поэтому защищает основу не только механически, но и электрохимически. В сухом воздухе цинковое покрытие почти не изменяется во влажной атмосфере, загрязненной различными промышленными газами, слой цинка, будучи анодом, постепенно растворяется, защищая основной металл от коррозии до тех пор, пока не оголится от покрытия значительная часть поверхности изделия. [c.131]

    Цинк, стандартный потенциал которого = —0,763 в, применяется в основном при производстве латуней, а также для протекторов и в качестве материала для защитных покрытий (оцинкованное кровельное железо и т. п.). Цинк весьма энергично растворяется с выделением водорода в минеральных кислотах, в окисляющих средах не пассивируется. В растворах хрома-тов на поверхности цинка образуется защитная пленка из хромата цинка. В нейтральных растворах корродирует в основном с кислородной деполяризацией. В щелочах не стоек (см. рис. 17). Скорость коррозии в воде мала. Она несколько возрастает в интервале температур 55—65° С, в воде при 100° С цинк стоек. В чистой и морской атмосферах стоек, однако при содержании в обычной атмосфере загрязнений SO2, НС1, SO3 стойкость цинка сильно снижается. Цинковые покрытия на железе создают анодную защиту. Из сплавов на цинковой основе известен сплав, из которого получают изделия литьем под давлением. Он легирован медью (1,5—2,5%) и алюминием (0,5—4,5%). Коррозионная стойкость этого сплава в воде и по отношению к водяному пару невысокая. [c.59]

    Первые опыты покрытия цинком горячим способом были произведены во Франции в 1741 г. Цинковое покрытие на железе является электрохимической защитой основного металла от коррозии в атмосфере, воде и в некоторых нейтральных растворах солей. Покрытию цинком подвергаются трубы, резервуары, детали машин, стальные листы, проволока и т. п. В сухом воздухе цинк почти не изменяется. Цинковые покрытия стойки в атмосфере, загрязненной углекислотой, а также стойки против действия ряда органических сред бензина, масла и т. п. В кислотах и щелочах эти по- [c.173]

    Цинковое покрытие защищает железо электрохимически от коррозии в атмосфере, воде и в ряде нейтральных растворов солей. В сухом воздухе цинк почти не изменяется. Цинком, покрывают трубы, резервуары, детали машин, стальные листы, проволоку и т. п. [c.147]

    В условиях высокой влажности воздуха при значительных колебаниях температуры с обильным выпадением росы (в тропических широтах) скорость коррозии сильно возрастает, и применение цинковых покрытий нецелесообразно. Морская вода также быстро разрушает цинковое покрытие. Анодный характер защиты стали цинковым покрытием не сохраняется, если в качестве среды используется горячая вода с температурой выше 70 °С (котельные установки, автоклавы). Защитное действие цинкового покрытия значительно ослабляется в атмосфере, содержащей продукты органического происхождения (синтетические смолы, олифу, хлорированные углеводороды). [c.163]

    Кадмиевые покрытия не могут быть рекомендованы для защиты от коррозии в атмосфере, загрязненной сернистым газом, от действия бензина и масла, а также для защиты водопроводных труб и предметов домашнего обихода, соприкасающихся с пресной водой. Во всех этих случаях следует применять цинковые покрытия. [c.172]

    Осадки сплава 2п—N1, содержащие — 2% никеля, и цинковые покрытия подвергались сравнительному испытанию на коррозию во влажной атмосфере с переменной температурой и в атмосфере с постоянной влажностью при температуре 18—25° С. [c.54]

    N1, осажденный из цианистого раствора, оставался светлым и не темнел более длительное время, чем цинковое покрытие, в атмосфере с постоянной повышенной влажностью. На покрытии с 25—28% N1, полученном в аммиакатном электролите, не обнаружено следов коррозии в течении 20 дней при испытании в тумане 3%-ного раствора N301, однако это покрытие является катодным по отношению к стали. При легировании цинка никелем твердость покрытия повышается в 2 раза при содержании в сплаве около 2% N1 и в 6—7 раз при содержании 12—28% N1. [c.57]

    Полярность покрытия в значительной степени зависит от состава среды, и в процессе коррозии в результате поляризации или других факторов может произойти изменение полярности покрытия. Исследование алюминиевых покрытий различной толщины и пористости в жесткой промышленной атмосфере Москвы, отличающейся высоким содержанием сернистых газов, показало, что в пористом покрытии (10-12 мкм) очаги коррозионных поражений концентрируются в местах наличия пор и происходит значительное язвенное разрушение стали. Такой же характер разрушения бьш на образцах с тонким пористым алюминиевым покрытием, испытанных в районе Уфимского нефтеперерабатьшающего завода и Оренбургского ГПЗ, атмосфера которых отличается высоким содержанием Нз 8 и ЗОз Толстые алюминиевые покрытия обнаруживали в этих условиях эффект намного выше, чем у цинковых той же толщины. Об этом свидетельствуют также сравнительные испытания, в промышленных атмосферах предприятий химической и нефтеперерабатьша-ющей промышленности алюминированной стали и цинковых покрытий, полученных различными методами и имеющими толщину слоя 50 мкм (из расплава), 25 мкм (гальваническое с хроматированием), 25 мкм (вакуумное), 100-120 мкм (термодиффузионное), 200-250 мкм (металлизационное). Характеристика промышленных атмосфер и скорость коррозии покрытий, полученных различными методами, приведена в табл.15. [c.59]

    В ряде сред, в частности в морской атмосфере, коррозионная стойкость цинка н его сплавов недостаточна Лакокрасочные покрытия значите ть-но повышают коррозионную стойкость цинка пли оцинкованных педе-лкй Однако адгезия лакокрасочных покрытий к цинку н цинковым покрытиям иизка. Применение фосфатнровйния в зтом случае повышает Едгсзйю лакокрасочных покрытий и обеспсчисает защиту от коррозии работающих в этих условиях изделий. [c.261]

    ТТП9 распространяется на защитные и цинковые покрытия, наносимые газопламенным напылением, металлизацией, распылением на изделия из стали и чугуна. Покрытия предназначены для защиты от коррозии в атмосферах со степенями коррозионной агрессивности 4 и 5 и в водах всех видов. Согласно стандарту ЧСП03 8551 выделены три степени агрессивности воды (табл. 16). [c.126]

    Кадмиевые покрытия в субтропической атмосфере не обнаружили особых преимуществ по сравнению с цинковыми. В начале испытаний у хроматиро-ванного кадмиевого покрытия толщиной 7 мкм хотя и не происходит заметных изменений блеска, однако после 6 месяцев коррозия поразила от 2 до 10%, а через два года — от 50—70% поверхности. Увеличение толщины кадмиевого покрытия до 30 мкм не намного улучшает противокоррозионные свойства, так как уже через 6 месяцев в открытой атмосфере происходит потеря блеска на 10%, а через два года — примерно до 70%, В атмосферном павильоне за 6 месяцев не были обнаружены изменения, коррозия покрытия началась лишь через 9 месяцев, а через 2 года коррозия занимала 40—60% всей поверхности. Таким образом, увеличение толщины кадмиевого покрытия как на воздухе, так и в жалюзийном павильоне не приводит к заметным улучшениям. Увеличение толщины цинкового покрытия приводит в субтропическом климате Батуми к лучшим результатам. При толщине цинкового покрытия 7 мкм в открытой атмосфере потеря блеска у образцов наблюдается через год на незначительной части поражения поверхности (0,5%), в то время как у кадмиевого покрытия при той же толщине за этот период испытания потеря блеска происходит на 20% поверхности, через 2 года у цинкового покрытия толщиной 7 мкм — на 20%, а у кадмиевого такой же толщины — на 40%. Что же касается коррозии основы, то при сравнении образцов с покрытием из 2п и Сс1 толщиной 30 мкм в лучшем состоянии оказались образцы, покрытые цинком отдельные очаги коррозии стали с цинковым покрытием занимали 3%, а с кадмиевым — 40% поверхности через 6 месяцев испытания. Через 2 года коррозия образцов, покрытых цинком, занимала 5% поверхности, а у образцов с кадмиевым покрытием за этот же [c.78]

    Иные результаты получены на образцах с покрытием горячего цинкования (70 мкм), а также с покрытием, полученным методом металлизации (200 мкм). Образцы с такими покрытиями через 2 года имели лишь слабое потускнение. Наиболее эффективным оказалась металлизация цинком толщиной 200 мкм. Через 2 года в открытой атмосфере были обнаружены точечные продукты коррозии сероголубоватого цвета диаметром 0,5—1 мм, а на образцах, размещенных в атмосферном павильоне, никаких изменений на поверхности обнаружено не было. Аналогичное положение наблюдалось в отношении металлизации алюминием (200 мкм). Таким образом, в условиях влажного субтропического климата цинковые покрытия, полученные методом горячего цинкования или металлизацией, являются более надежными, чем электролитические покрытия. [c.79]

    Ранее установлено, что цинковое покрытие, нанесенное методом металлизации, наиболее эффективно предохраняет сталь от щелевой коррозии, возникающей в местах контакта металла со строительными материалами. И. Л. Розеифельд показал, что скорость атмосферной коррозии в зазоре и вне его зависит от характера атмосферы и природы сплавов, в связи с чем разрушение металла в щелях не всегда сильнее, чем на открытой поверхности. В частности, в результате накапливания в щелях продуктов коррозии, подкисляющих в других случаях электролит, и невозможности процесса их гидролиза, скорость щелевой коррозии на железных конструкциях со временем замедляется. [c.87]

    Защитные свойства металлических покрытий определяются как коррозионной стойкостью самого материала покрытия, так и качеством покрытия (пористостью, сплошностью, толщиной и др.) Наибольшее применение для защиты стальных конструкций в атмосферных условиях нашли цинковые и кадмиевые покрытия. Результаты многочисленных натурных и ускоренных испытаний позволили Л. А. Шувахиной рекомендовать справочные данные о скорости коррозии (или сроках службы) кадмиевых и цинковых покрытий на стали в различных климатических зонах при наличии в атмосфере оксидов серы и хлор-ионов (табл. 13) [92]. Из приведенньих данных следует, что скорость коррозии цинкового покрытия может изменяться в зависимости от климатического района в сотни раз. [c.93]

    Электролитический сплав 5п—2п, содержащий 80% 5п и 20% 2п, отличается высокими защитными свойствами в условиях атмосферной коррозии. В промышленной атмосфере оловянно-цинковые покрытия разрушаются меньше, чем цинковые покрытия. Этот сплав проявляет анодный характер защиты стали от коррозии и обладает меньшей пористостью, чем покрытия чистым оловом. При малом срдержании цинка в сплаве ( 10%), так же как и при содержании его более 50 %, покрытие сплавом теряет свои преимущества перед покрытием чистыми металлами. Важным достоинством этого сплава является способность к пайке, которая сохраняется длительное время [5, 53, 54]. В соответствии с ГОСТ 14623-69 этот сплав может применяться в очень жестких условиях эксплуатации. Имеются сведения о применении в США автоматических линий [55] для электроосаждения сплава 2п— 5п. Практическое применение получил щелочно-цианистый электролит, в котором оба металла присутствуют в виде комплексных соединений олово в виде станната, а цинк в виде цианистой соли. [c.213]

    С тех пор как была показана возможность получения дешевых цинковых покрытий, роль противокоррозионного кадмирования существенно снизилась. Однако вопрос о том, какой из этих двух металлов обеспечивает лучшую защиту, все еще иногда поднимается. Так, Шикор считает, что большая потеря веса кадмия в естественной атмосфере обусловлена его высоким атомным весом. Кадмий имеет ряд преимуществ перед цинком он легче паяется, имеет меньшее электрическое сопротивление (контакты), металлический блеск его устойчивее, он более стоек против щелочей (промывной щелок). Сравнивая кадмий и цинк, Вейгельт [54] пришел к выводу, что противокоррозионные свойства у обоих металлов идентичны, причем при грубой оценке можно считать, что блестящее цинковое покрытие толщиной 10—12 мк и слой кадмия толщиной 6—8 мк создают равную защиту от коррозии. [c.705]

    Длительные испытания, проведенные Американским обществом гальваностегов, показали, что покрытия, содержащие около 10% С(1 и 90% 2п, защищают от коррозии в условиях промышленной атмосферы дольше, чем отдельно кадмиевые и цинковые покрытия. [c.51]


Смотреть страницы где упоминается термин Цинковые покрытия коррозия в атмосфере: [c.325]    [c.236]    [c.94]    [c.172]   
Коррозия металлов Книга 1,2 (1952) -- [ c.12 , c.13 ]

Коррозия металлов Книга 2 (1952) -- [ c.12 , c.13 ]




ПОИСК





Смотрите так же термины и статьи:

Атмосфера

Коррозия в атмосфере

Цинковая

коррозия коррозия в атмосфере



© 2025 chem21.info Реклама на сайте