Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

коррозия коррозия в атмосфере

    Рассмотрим химическую коррозию в газах (газовая коррозия), в частности коррозию в атмосфере кислорода. Уравнение реакции окисления металлов кислородом можно записать в общем виде  [c.208]

    Первые опыты покрытия цинком горячим способом были произведены во Франции в 1741 г. Цинковое покрытие на железе является электрохимической защитой основного металла от коррозии в атмосфере, воде и в некоторых нейтральных растворах солей. Покрытию цинком подвергаются трубы, резервуары, детали машин, стальные листы, проволока и т. п. В сухом воздухе цинк почти не изменяется. Цинковые покрытия стойки в атмосфере, загрязненной углекислотой, а также стойки против действия ряда органических сред бензина, масла и т. п. В кислотах и щелочах эти по- [c.173]


    Самым эффективным методом борьбы с газовой коррозией в атмосфере, содержащей азот, является повышение содержания никеля в сплаве. В последнее время в качестве защитных сред при термической обработке никелевых термоустойчивых сплавов используют азот или смесь водорода с азотом. [c.84]

    Никель и его сплавы ие подвержены точечной коррозии. Коррозия никеля большей частью протекает с кислородной деполяризацией, вследствие чего большое влияние на скорость коррозии оказывает присутствие воздуха, перемешивание, наличие окислителей в растворе и т. д. Никель соверщенно стоек в сухой и влажной атмосфере, но окисляется на воздухе при температуре около 500° С. [c.256]

    Кроме характера и состава атмосферы, большое значение для развития атмосферной коррозии имеют климатические условия. Наблюдается заметная разница в коррозионном поведении металлов в разные периоды года. Так, в теплую погоду понижается относительная влажность, затрудняется конденсация влаги и происходит быстрое испарение ее, поэтому скорость коррозии уменьшается. Понижение температуры приводит к ускорению коррозионного процесса, так как облегчается конденсация влаги на поверхности металла и затрудняется ее испарение. Важную роль играет направление ветра. В зависимости от него может изменяться состав атмосферы ветры, дующие преимущественно из промышленных районов или с моря, способствуют обогащению атмосферы коррозионно-активными газами, частичками солей и влаги. [c.9]

    В зависимости от типа испытаний длительность их может изменяться. Обычно производят осмотры каждые полгода. Определение потери веса углеродистых и низколегированных сталей в агрессивной промышленной или в морской атмосфере требует 1, 2, 4, 8 и 16 лет. Так как кривая зависимости коррозии от времени имеет для некоторых сплавов параболическую форму, то, для получения более правильной картины коррозии в течение первого времени испытания, иногда рекомендуется снимать образцы через 0,5, 1,5, 3,5, 7,5 и 15,5 лет, чтобы точнее определить ход кривой в начале процесса. В сильно загрязненной атмосфере выдержка в полгода достаточна для того, чтобы получить основные данные в отношении коррозионной стойкости. Через 3,5 года выводы из полученных данных считаются предварительными. Для окончательных выводов необходимо более длительное испытание. В менее загрязненной атмосфере потеря веса меньше и поэтому продолжительность в 2, 4, 8 и 16 лет вполне оправдана. Для установления наиболее подходящей продолжительности испытания следует учитывать природу испытуемых материалов и агрессивность атмосферы. [c.1110]


    Из большого числа факторов, определяющих скорость коррозии металлических деталей, находящихся в воздушной среде, наиболее важными являются влажность воздуха и состав воздушной атмосферы. Влага, оседающая на металлических поверхностях, всегда содержит растворенные соли и коррозионно-активные газы. Источники минерализации атмосферной влаги — мельчайшие твердые частицы минеральных веществ в виде солей морского и вулканического происхождения, находящиеся в атмосфере. Минерализация пленок влаги па металлических поверхностях происходит также за счет обогащения их продуктами коррозии. Большое значение для развития коррозии имеет непосредственное выпадение на поверхность металлических конструкций атмосферных осадков в виде дождя и снега, а также увлажнение конструкций вследствие обрызгивания и> морской или речной водой. [c.191]

    Неметаллические покрытия делятся на неорганические и органические. Из неорганических покрытий укажем на оксидные и фосфатные пленки на железе. При кипячении железа в растворе солей фосфорной кислоты (обычно солей Ре и Мп) получают фосфатные пленки, хорошо защищающие от коррозии в атмосфере. [c.366]

    Во избежание коррозии атмосфера в печи (воздух, инертный газ и др.) не должна взаимодействовать с термопарой. [c.24]

    Горячее цинкование используют для защиты листов кровельного железа, ста.ли, проволоки, сетки, лепты и готовых издели) от коррозии в атмосфере, воде и в ряде нейтральных растворов, в которых ципк обладает коррозиончюй стойкостью. [c.326]

    Изменение состава технического металла. Нередко для защиты металла в него вводят некоторые компоненты, повышающие его коррозионную стойкость. Так, введенные в сталь 12%Сг делает ее нержавеющей — устойчивой против коррозии в атмосфере, кислотах, щелочах, растворах солей. Сталь, содержащая 1 % 51 и 15 % Сг, жаростойка до 800 °С при 25 % Сг жаростойкость повышается до 900—950 °С. [c.229]

    Галиды. Для ванадия (V) известен лишь один галид — пентафторид ванадия VF5— бесцветные кристаллы, сублимирующиеся при 111° С. Галиды ниобия и тантала летучи, что исключает возможность образования каких-либо защитных пленок, предохраняющих ниобий и тантал от коррозии в атмосфере галогенов при высокой температуре. Летучесть галидов можно оценить по данным табл. 16. [c.95]

    В случае с элементом Даниеля коррозия происходит тогда, когда металл устойчив к действию рассматриваемого раствора, т. е. акцептор электронов (окислитель) должен находиться в растворе с более высоким окислительно-восстановительным потенциалом, чем система М +/М. Ионы Си + действуют в элементе Даниеля как катодные реагенты, что на практике встречается редко (некоторые виды коррозии медных сплавов представляют исключение). Наиболее распространенные катодные реагенты в естественной среде — это гидратированный протон Н3О+ (или молекула воды) и растворенный кислород, который постоянно присутствует там, где водная среда находится в контакте с атмосферой. [c.28]

    Снижение относительной влажности воздуха уменьшает агрессивное действие сернистого газа, при этом плотность коррозионных токов мало зависит от его концентрации. Таким образом, влажность воздуха является как бы аккумулятором примесей, в том числе сернистого газа, являющегося наряду с кислородом деполяризатором катодных реакций. Некоторые исследователи устанавливают прямую связь между скоростью коррозии и содержанием сернистых соединений в атмосфере. Повышенная относительная влажность воздуха особо опасна для изделий сложной конфигурации, имеющих много щелей, зазоров, трещин и т. п., в которых долго сохраняются пленка влаги и нерастворимые твердые частицы, адсорбирующие газы из атмосферы. С увеличением относительной влажности толщина адсорбционного слоя электролита на поверхности металла возрастает. Так, при влажности 55% она составляет 15 молекулярных слоев, при относительной влажности около 100% количество их возрастает до 90—100. Замечено, что коррозия на металлических образцах, обращенных к земле на высоте до 0,5 м, протекает интенсивнее, чем на поверхности, непосредственно доступной атмосферным осадкам. Это особенно ярко выражено в условиях повышенной относительной влажности и объясняется тем, что в стороне, обращенной к земле, дольше сохраняется влага. [c.17]

    Морская атмосфера обладает повышенной коррозионной активностью вследствие наличия в воздухе морской соли в виде тонкой пьши и высокой относительной влажности. Электрохимический процесс в морской атмбсфере происходит иначе, чем в морской воде. В морской атмосфере доступ кислорода через тонкую пленку влаги облегчен и не лимитирует процесс. В данном случае скорость коррозии зависит от омического сопротивления влажной пленки, так как при малой толщине ее сопротивление внешней цепи между анодом и катодом коррозионного элемента может стать очень большим. Морская соль, содержащаяся в воздухе, растворяется в пленке влаги и быстро насьдцает ее, что значительно уменьшает омическое сопротивление пленки и увеличивает коррозионный ток. Коррозия в морской атмосфере у сталей, содержащих медь, меньше, чем у углеродистых. [c.10]


    Коррозия в атмосфере, содержащей водород. Водород — одна из наиболее важных составных частей промышленных газов водяного, светильного, генераторного. При его сжигании образуется водяной пар. Он легко диффундирует в металлы, изменяет их свойства и способствует протеканию некоторых реакций на поверхности и в толще металла. [c.84]

    Коррозия в атмосфере, содержащей водяной пар, двуокись серы, сероводород и др. Подробно изучены условия равновесия, восстановления и окисления железа в смеси водород—водяной пар в зависимости от температуры. Равновесие сильно смещается в присутствии легирующих элементов, например хрома и алюминия при определенных условиях водяной пар обладает более сильным окислительным действием, чем воздух или двуокись углерода. [c.85]

    Влияние большого объема продуктов коррозии. Коррозия в щелях, часто наблюдаемая на тех или иных сооружениях, большей частью вызывается задерживающейся в них влагой, хотя она испарилась в других местах. Если щели е закрыты должным образом, то в случае агрессивной атмосферы положение вскоре может сделаться опасным. Твердая ржавчина, осаждаясь в щели и занимая больший объем, чем разрушенный металл, может создать большое давление. В случае, если заклепки или болты, соединяющие листы, достаточно крепки, щель запечатывается , и действие ржавления прекращается. Усилие растяжения, вызванное появлением ржавчины, может превосходить 1,7 кг/км , и если при этом получается рычаг , заклепки могут отлетать одна за другой. Случаи такого рода известны в особенности в тех местах, где начальной стадии разрушения помогает вибрация. Чтобы избегнуть вышеупомянутого явления, часто достаточно применение во время сборки пасты из свинцового сурика или клеевой грунтовки, или какого-либо другого ингибитивного пластичного материала иногда применяется портланд-цемент. Как указано в книге Ньюмэна, опубликованной в 1896 г., одно время часто наблюдалась коррозия, источником которой являлись щели. В котельных конструкциях также важно чеканить заклепочные соединения. [c.649]

    Стали с особыми свойствами. К этой группе относятся нержавеющие, жаростойкие, жаропрочные, магнитные и иекото[)ые другие стали. Нержавеющие стали устойчивт, против коррозии в атмосфере, влаге и в растворах кислот, жаростойкие — в коррозионно-активных средах при высоких температурах. Жаропрочные стали сохраняют высокие механические свойства при нагревании до значительных температур, что важно при изготовлении лопаток газовых турбин, деталей реактивных двигателей и ракетных установок. Важнейшие легирующие элементы жаропрочных стале это хром (15—20%), никель (8—15%), вольфрам. Жаропрочные ста.ли принадлежат к аустеннтиым сплавам. [c.686]

    Присадка кремния в аустенитные стали типа 25—20 повышает их сопротивление окислению при высоких температурах до 1150°С и коррозии в атмосфере продуктов сгорания топлива с повышенным содержанием серы и сернистых соединений. В восстановительных средах пиролиза углеводородного сырья эта сталь более устойчива к науглероживанию по сравнению с обычными хромоникелевыми аустенитными сталями. Однако присадка кремния увеличивает склонность стали к образованию в структуре о-фазы. Чем выше содержание кремния в стали типа 25—20, тем быстрее и в большем количестве выделяется а-фаза, особенно при длительном нагреве в интервале умеренно высоких температур. Эта фаза — очень твердая, хрупкая и немагнитная. Она представляет собой интерметаллнческое соединение железа с хромом типа Ре—Сг и образуется из твердого раствора по схеме у——> а-фаза либо непосредственно у —йт-фаза. [c.30]

    Коррозионный нзнос. Коррозией называется процесс разрушения металлов при химическом или электрохимическом взаимодействии их с окружающей средой. Металлы разрушаются при взаимодействии с жидкими и газообразными продуктами, а также в результате окислительно-восстановительных процессов взаимодействия с окружающей атмосферой. [c.47]

    К числу факторов, влияющих на скорость коррозии в атмосфере, не меньщую роль, чем степень влажности воздуха, играет остаи пленки, скондеиеированиой на металлической поверхности. Состав пленки и степень ее агрессивности зависят от степени загрязненности воздуха и характера этих загрязнений. В зависимости от этих условий, скорость атмосферной коррозии одного и того же металла или сплава может изменяться в десятки и сотни раз. [c.177]

    Как известно, алюминий и его сплавы всегда покрыты тонкой (0,02—0,04 мкм) естественной окисной пленкой А12О3 или А)20з- пНгО, которая, однако, не может служить надежной защитой от коррозии в атмосфере, особенно загрязненной хлоридами. Поэтому для создания более толстого сплошного окисного слоя изделия из алюминия и его сплавов после очистки от различных загрязнений подвергаются анодному или химическому оксидированию. [c.453]

    Коррозионная стойкость стали в атмосферных условиях резко возрастает при введении даже незначительного количества легирующих элементов, поэтому применение низколегированных сталей в качестве строительных и конструкщюнных материалов, эксплуатируемых в атмосферных условиях, экономически выгодно долговечность сооружений может быть повышена в 2-3 раза без дополнительной защиты в условиях промышленной, городской и сельской атмосферы. Защитное действие легирующих элементов в атмосферостойких низколегированных сталях основано на том, что легирующие элементы либо их соединения тормозят обычные фазовые превращения в ржавчине (см. рис. 1), и поэтому слой ржавчины на атмосферостойкой стали уплотняется. Считается также, что наряду с усилением защитных свойств слоя продуктов коррозии основной причиной положительного влияния меди является возникновение анодной пассивности стали за счет усиления эффективности катодной реакщш. Действие меди как эффективного катода подтверждается тем, что ее положительное влияние наблюдается уже в начальных стадиях коррозии, когда на поверхности стали еще не образовался слой видимых продуктов коррозии. [c.12]

    Несмотря на широкое развитие промышленности синтетических веществ, металлы по-прежнему остаются основным конструкционным материалом, незаменимым в ряде важнейших отраслей промышленности и сельского хозяйства. Более того, объем производства металлов неуклонно растет и соответственно неуклонно увеличивается мировой металлический фонд. В СССР производство стали за последние полвека выросло более чем в 30 раз. Металлофонд страны превысил 1 млрд. т (главным образом за счет черных металлов). С увеличением массы применяемого металла растут и потери его от коррозии, причем, как показывают статистические данные, потери растут намного быстрее, чем объем металлофонда.,В первую очередь это объясняется изменением самой структуры метйллофонда. Раньше основное количество металла направлялось в транспорт (рельсы, мосты, подвижной состав и т. д.). С годами все возрастающая доля металлофонда приходится на т кие отрасли промышленности, как химическая, нефтехимическая, целлюлозно-бумажная, нефте-и газодобывающая, цветная и черная металлургия, атомная энергетика и другие, в которых условия эксплуатации металлов несравненно жестче, чем на транспорте. Здесь металл работает при повышенных температурах и давлениях, в потоках жидкости, в контакте с агрессивными средами. Кроме того, и в почвах, и в атмосфере коррозия металлов также становится все более интенсивной вследствие загрязнения воздуха и вод промышленными отходами, стимулирующими разрушение Для нашедших сейчас широкое применение [c.6]

    С коррозией связано засорение окружающего пространства как прямыми ее продуктами и вышедшими из строя прокорродиро-вавшими машинами и оборудованием ( кладбища автомашин, станков и т. д.), так и вредными, а иногда даже ядовитыми веществами, попадающими в атмосферу, почву и водоемы в результате вызванных коррозией аварий промышленного оборудовайия. Продление срока жизни металлических сооружений благодаря защите их от коррозии способствует сохранению чистоты окружающей среды. В этом — экологический аспект коррозионной проблемы. [c.8]

    ТТП9 распространяется на защитные и цинковые покрытия, наносимые газопламенным напылением, металлизацией, распылением на изделия из стали и чугуна. Покрытия предназначены для защиты от коррозии в атмосферах со степенями коррозионной агрессивности 4 и 5 и в водах всех видов. Согласно стандарту ЧСП03 8551 выделены три степени агрессивности воды (табл. 16). [c.126]

    В связи с тем что с повышением относительной влажности воздуха скорость коррозии увеличивается неравномерно, Вернон ввел понятие о ве-пичине критической влажности воздуха, выше которой скорость коррозии иеталла резко возрастает. Для железа и стали такая критическая точка, 10 Вернону, находится в пределах 63—65% влажности. Выше нее на поверх-юсти металла возникают адсорбционные слои влаги, служащие растворите-1ЯМИ агрессивных компонентов атмосферы. При этом образуется утолщенная 1ленка влаги последняя тождественна по свойствам обычной воде и спо- обна обеспечивать гидратацию ионов металла. Вернон показал также,что отя с повышением влажности, как правило, усиливается процесс коррозии, щнако в некоторых случаях, достигнув определенного предела, он замед- яется [17]. [c.17]

    Кадмиевые покрытия в субтропической атмосфере не обнаружили особых преимуществ по сравнению с цинковыми. В начале испытаний у хроматиро-ванного кадмиевого покрытия толщиной 7 мкм хотя и не происходит заметных изменений блеска, однако после 6 месяцев коррозия поразила от 2 до 10%, а через два года — от 50—70% поверхности. Увеличение толщины кадмиевого покрытия до 30 мкм не намного улучшает противокоррозионные свойства, так как уже через 6 месяцев в открытой атмосфере происходит потеря блеска на 10%, а через два года — примерно до 70%, В атмосферном павильоне за 6 месяцев не были обнаружены изменения, коррозия покрытия началась лишь через 9 месяцев, а через 2 года коррозия занимала 40—60% всей поверхности. Таким образом, увеличение толщины кадмиевого покрытия как на воздухе, так и в жалюзийном павильоне не приводит к заметным улучшениям. Увеличение толщины цинкового покрытия приводит в субтропическом климате Батуми к лучшим результатам. При толщине цинкового покрытия 7 мкм в открытой атмосфере потеря блеска у образцов наблюдается через год на незначительной части поражения поверхности (0,5%), в то время как у кадмиевого покрытия при той же толщине за этот период испытания потеря блеска происходит на 20% поверхности, через 2 года у цинкового покрытия толщиной 7 мкм — на 20%, а у кадмиевого такой же толщины — на 40%. Что же касается коррозии основы, то при сравнении образцов с покрытием из 2п и Сс1 толщиной 30 мкм в лучшем состоянии оказались образцы, покрытые цинком отдельные очаги коррозии стали с цинковым покрытием занимали 3%, а с кадмиевым — 40% поверхности через 6 месяцев испытания. Через 2 года коррозия образцов, покрытых цинком, занимала 5% поверхности, а у образцов с кадмиевым покрытием за этот же [c.78]

    Атмосферная коррозия протекает в тонких слоях влаги, с онденсировавшейся на поверхности металла. Эта коррозия проходит обычно с кислородной деполяризацией. Поскольку тонкая пленка влаги насыщена кислородом, атмосферная коррозия в ряде случаев весьма интенсивна. Скорость коррозии в атмосфере зависит от влажности и температуры воздуха. Наиболее коррозионно-активны сильно загрязненные атмосферы промыщ-ленных регионов, наименее активны — чиспте и сухие континентальные атмосферы. Индустриальные атмосферы насыщены агрессивными газами (СО , МНз, N0, и другими), которые, растворяясь в пленках влаги, возникающих на поверхности металлов, превращают их в растворы солей, кислот, существенно усиливая коррозию. Опасна в коррозионном плане приморская атмосфера, так как содержание хлоридов в ней повышено. [c.30]

    Коррозия в атмосфере азота. При нагревании в воздушной атмосфере большинство металлов и сплавов сильно окисляются, тогда как взаимодействие их с азотом протекает слабо. Исключение составляют сплавы, содержащие нитридообразующие элементы хром, алюминий, титан, бериллий и др. Известно, что низколегированные хромом и алюминием стали при температуре 500 С образуют нитриды, обладающие высокой твердостью. Процесс образования нитридов на металлической поверхности называется азотированием . [c.83]


Смотреть страницы где упоминается термин коррозия коррозия в атмосфере: [c.58]    [c.154]    [c.284]    [c.12]    [c.15]    [c.175]    [c.8]    [c.374]    [c.376]    [c.195]    [c.40]    [c.86]    [c.59]    [c.94]    [c.121]   
Коррозия металлов Книга 1,2 (1952) -- [ c.227 ]

Коррозия металлов Книга 2 (1952) -- [ c.227 ]




ПОИСК





Смотрите так же термины и статьи:

Алюминий коррозия в атмосфере

Атмосфера

Бронза алюминиевая коррозия в атмосфере

Влияние загрязненной атмосферы на коррозию строительных конструкций

Влияние состава атмосферы и климатических условий на коррозию металлов

Влияние состава атмосферы на коррозию в условиях конденсации

Влияние состава атмосферы на коррозию металлов

Вольфрам, коррозионная стойкость коррозия в атмосфере

Железо и сталь. Коррозия в атмосфере

Железо коррозия в атмосфере

Зависимость скорости коррозии от объема резервуаров и состава атмосферы

КОРРОЗИЯ В ЖИДКИХ СРЕДАХ, АТМОСФЕРЕ И ГАЗАХ ПРИ НИЗКОЙ ТЕМПЕРАТУРЕ Железо и его сплавы

Кадмиевые покрытия атмосфере коррозия

Кадмий, коррозия в атмосфере

Кадмий, коррозия в атмосфере контакта с другими металлам

Коррозия в атмосфере

Коррозия в атмосфере

Коррозия в морской атмосфере

Коррозия в морской воде и в морской атмосфере

Коррозия мягкой степи в S2—содержащей атмосфере

Коррозия сталей и цветных металлов в атмосфере, в морской воде и морское обрастание

Латунь коррозия в атмосфере в водных растворах в газах

Латунь коррозия в атмосфере вводных растворах в газах

Магний коррозия в атмосфере

Медь коррозия в атмосфере

Молибден, коррозионная стойкость различных средах коррозия в атмосфере

Ниобий, коррозия в атмосфере в водных растворах в газах при высокой температуре

Олово, коррозия в атмосфере

Олово, коррозия в атмосфере влияние кислорода

Олово, коррозия в атмосфере влияние контакта с другими металлами

Особенности коррозии металлов в атмосфере, почве, морской воде и контактная коррозия

Палладий коррозия в атмосфере

Пыль в атмосфере, влияние на коррозию

Свинец коррозия в атмосфере

Свинцовые оболочки коррозия в атмосфере в почве

Сплавы алюминия коррозия в атмосфере способы защиты

Сплавы железа с хромом коррозия в атмосфере

Сплавы меди с медью, коррозия в атмосфере

Сплавы медноцинковые коррозия в атмосфере

Сплавы олова, коррозия в атмосфер

Сплавы олова, коррозия в атмосфер с палладием

Сталь коррозия в атмосфере

Сталь хромомарганцовистая коррозия в атмосфере

Тантал коррозия в атмосфере

Фреттинг-коррозия состава атмосферы

Характерное и весьма важное свойство титана — его практически полная коррозионная устойчивость в морской воде и морской атмофере В этом отношении титан превосходит даже такие коррозионно-устойчивые материалы, как аустенитная нержавеющая сталь, монель-металл, купроникель, приближаясь к устойчивости благородных металлов В табл. 90 приведены данные по скорости коррозии некоторых коррозионно-устойчивых металлических сплавов и среди них листового титана в условиях морской атмосферы, по данным пятилетних испытаний, из которых следует полная устойчивость титана в этих условиях Скорость атмосферной коррозии (на расстоянии 24от моря), по данным пятилетних испытаний

Цинк коррозия в атмосфере

Цинковые покрытия коррозия в атмосфере

Чугун, кавитационная эрозия коррозионная стойкость различных средах коррозия в атмосфере коррозия в морской воде

коррозионное растрескивание коррозия в атмосфере способы защиты

механические коррозия в атмосфере в водных растворах в газах при высокой температуре в морской воде

морской с никелем, коррозия в атмосфере в жидких

плотность с хромом, коррозия атмосфере газах

потускнение применение коррозия в атмосфере в водных растворах в газах при высокой температуре в морской воде

растворах медистая, влияние добавок фосфора коррозия в атмосфер

физические свойства с никелем, коррозия в атмосфере И в жидких

хромистой коррозия в атмосфере



© 2024 chem21.info Реклама на сайте