Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дарвиновский отбор

    Теория эволюции, которая была сильно подкреплена данными сравнительной анатомии, достигла наивысшего развития в дарвинизме, т. е. в дарвиновской теории естественного отбора. После создания этой теории всю вторую половину [c.388]

    Теория эволюции — один из основных разделов теоретической биологии. В современном ее понимании теория эволюции охватывает проблему возникновения жизни и биологической информации, эволюцию целой биосферы и развитие отдельных видов. Основной идеей теории эволюции была и остается идея дарвиновского отбора. Сейчас ясно, однако, что эта идея требует дальнейшего развития, уточнения понятий и более четкого анализа условий отбора. Необходимость в этом возникла в связи с исследованиями процессов возникновения и преобразования биологической информации и попытками на новом уровне оценить темпы эволюции. Эти попытки привели к парадоксальному па первый взгляд результату — вероятность как спонтанного возникновения простейших живых объектов, так и их дальнейшей эволюции крайне мала. Возникла ситуация, которую можно охарактеризовать словами теория эволюции под огнем [1]. Суть проблемы в следующем. [c.25]


    Тесная связь биологии и физики представлялась очевидной на ранних этапах развития естествознания. В дальнейшем, по мере углубления биологических знаний, раскрывавших сложность и своеобразие явлений жизни, пути биологии и физики все более расходились. Основные биологические закономерности — прежде всего дарвиновский закон естественного отбора — рассматривались как совершенно несовместимые с физикой. [c.11]

    Дарвиновская приспособленность (относительная приспособленность) Естественный отбор Компоненты приспособленности [c.164]

    Дарвиновский принцип важности естественного отбора до сего времени полностью сохранил свое значение, тогда как наше представление о природе биологической изменчивости со времен Дарвина коренным образом изменилось. Мы теперь знаем, что необходимо проводить различие между модификациями, возникающими под влиянием среды, и наследственной изменчивостью. Мы знаем также, что модификации не наследуются, а представляют собой лишь индивидуальную изменчивость. [c.117]

    Весьма вероятно, что жизнь на Земле впервые появилась в виде структур, напоминающих гены современных организмов. В результате мутации этих первичных генов и дарвиновского естественного отбора развились более высокоорганизованные живые формы вначале простые системы с несколькими генами, затем одноклеточные формы со многими генами и, наконец, многоклеточные растения и животные, у которых гены [c.155]

    Возможно, селекция кажется менее зловещей из-за того, что она несколько старше генной инженерии. Но обе технологии еще очень молоды, если сравнивать их с длинной историей дарвиновского естественного отбора. Аргументы противников генной инженерии напоминают мне одну старую леди, которая отказалась садиться в самолет на том основании, что если бы Бог считал для нас допустимым летать, он не дал бы нам железную дорогу. [c.163]

    Образования (этот термин нас ни к чему не будет обязывать), возникшие в первичном бульоне, каким-то образом должны были начать вести обмен веш еств, расти и ассимилировать растворенные веш ества. Но продолжать свое существование и распространяться они могли, лишь научившись делиться, как только их размер превзойдет определенные границы. Такие процессы были предшественниками возникших позже механизмов клеточного деления. По-видимому, протекание этих процессов упорядоченным путем давало какое-то преимущество, и постепенно распространились те образования, которые обладали необходимыми для этого механизмами. Такой тип отбора можно рассматривать как примитивный ранний вариант дарвиновской борьбы за существование . [c.53]

    Таким образом, суть дарвиновской теории механизма эволюции сводилась к следующему 1) у особей в пределах каждого отдельного вида наблюдается значительная, но непрерывная изменчивость по морфологическим и физиологическим признакам 2) эта изменчивость возникает случайным образом и наследуется 3) популяции животных и растений обладают значительной способностью к увеличению 4) однако необходимые им ресурсы ограничены, и поэтому особи данной популяции борются за собственное существование и за существование своих потомков 5) поэтому только некоторые (те, кого Дарвин назвал наиболее приспособленными) выживают и оставляют потомков, обладающих теми же самыми признаками 6) в результате такого естественного отбора наиболее приспособленных представители данного вида становятся все лучше и лучше адаптированными к окружающим условиям. [c.16]


    Ранние менделисты, подобно де Фризу, преуменьшали эффективность естественного отбора и подчеркивали первостепенное значение менделевских соотношений и мутаций в формовке эволюции. На некоторых дарвинистов это произвело такое впечатление, что они начали высказывать сомнения в обоснованности менделизма, и между этими двумя группами начались ожесточенные дебаты. Другие эволюционисты, понимая важность менделизма и таящиеся в нем возможности, вознамерились примирить его с дарвиновской теорией. Поскольку возникшая в результате их усилий синтетическая теория эволюции выходила за рамки механизмов, предложенных Дарвином, ее часто называют неодарвинизмом. Немалую роль в решении этой проблемы сыграл переход от рассмотрения последствий скрещивания между двумя особями к последствиям скрещивания между особями в популяциях менделевские соотношения превратились, таким образом, в частоты различных генотипов в дайной популяции, а генетические и эволюционные изменения выражались в изменениях частот соответствующих генов. В результате генетика превратилась в популяционную генетику, которая развивалась параллельно с неодарвинизмом. В дальнейших разделах настоящей главы дан обзор основных моментов этого развития и показано, как популяционная генетика пыталась ответить на ключевые вопросы, поставленные менделистами. [c.41]

    ВО глубоко отличных друг от друга предбиологических систем. И здесь, при переходе от химической к биологической стадии эволюции, на первый план выдвинулось уже не биохимическое предопределение, а новая биологическая закономерность — дарвиновский принцип естественного отбора наиболее приспособленных систем. [c.7]

    Концепция дарвиновской приспособленности. Дарвиновская приспособленность-это центральная концепция теории отбора. В конкретных условиях среды не все индивиды в популяции размножаются одинаково успешно. Эти различия обусловлены их генетическими особенностями. Данная проблема, очевидно, имеет много медицинских, социальных и генетических аспектов. Однако в связи с естественным отбором значение имеет только один ее аспект различные скорости размножения особей, имеющих разный генотип. Если считать размер популяции бесконечно большим, так что случайными отклонениями можно пренебречь, к изменению генных частот во времени могут привести только репродуктивные различия. Репродуктивную способность определенного генотипа по сравнению с нормой часто называют дарвиновской приспособленностью этого генотипа. Понятие приспособленности можно определить и для одного аллеля, если этот аллель оказывает влияние на репродуктивную способность его носителя. Приспособленность генотипа может быть большей или меньшей по двум причинам. [c.296]

    Этот фундаментальный вопрос возник уже очень давно, о чем свидетельствуют крайне детализированные мифы о сотворении мира, которые были созданы большинством крупных цивилизаций. Начиная от Платона и Аристотеля многие философы задавались этим вопросом. На протяжении древней и средневековой истории западной цивилизации общепринятым было представление, согласно которому полностью сформированные индивидуальные организмы — насекомые, рептилии и даже млекопитающие— возникают спонтанно из неживой материи [1]. Относительно происхождения человека в научных и интеллектуальных кругах и вообще в среде образованных людей в настоящее время господствуют взгляды, основанные на дарвиновской теории происхождения видов путем естественного отбора из более ранних сходных форм. Сформулированный выше вопрос можно поставить в отношении любого другого вида организмов, как ныне существующих, так и ископаемых. Оказывается, что и мифы о сотворении мира, н древний и средневековый фольклор, и теория эволюции Дарвина дают на этот вопрос одии и тот же ответ да, в истории Земли существовал такой период, когда любой данный вид организмов отсутствовал. Однако возникновение видов объясняется во всех этих случаях различными причинами. Но только в рамках дарвиновской теории эволюции естественным образом возникает третий вопрос, который непосредственно подводит нас к формулировке проблемы происхождения жизни. [c.14]

    Самым слабым местом в дарвиновской теории естественного отбора было отсутствие адекватного объяснения механизма наследственности. Поскольку естественный отбор не мог бы работать, если бы потомки не наследовали признаки своих родителей, действие естественного отбора определяется механизмом наследственной передачи этих признаков. Теория наследственности, общепринятая в настоящее время, была впервые предложена Грегором Менделем (рис. 1.5) в 1865 г., но приобрела широкую известность только в начале XX в. Проводя эксперименты с разными сортами гороха, Мендель получил данные, позволяющие предположить, что наследование обусловлено некими частицами, передаваемыми от родителей потомкам. Теперь мы называем эти частицы генами. Законы, которым подчиняется передача генов от одного поколения другому, рассматриваются в гл. 4. Идея корпускулярной наследственности имеет огромное значение для понимания того, каким образом естественный отбор действует в популяциях. Все вытекающие из этой идеи следствия подробно описаны в гл. 5—9. [c.21]


    Фишер называл свою теорему основной, потому что она строго определяла зависимость между двумя краеугольными камнями дарвиновской теории — изменчивостью внутри популяций и скоростями эволюционного изменения. Однако эта зависимость оказалась не столь несомненной, как полагал Фишер. Так, например, если приспособленность сама зависит от генетической дисперсии (что представляется правдоподобным в некоторых ситуациях см. разд. 3.5), то скорость изменения приспособленности не должна быть связана с этой дисперсией простой зависимостью. Кроме того, Фишер вывел свою зависимость для случая одного локуса с двумя аллелями если же рассматривать примеры с участием более чем одного локуса, то зависимость между этими двумя переменными может оказаться значительно сложнее (см. разд. 2.3.3). Есть также и другие потенциальные неясности и проблемы (И]. Таким образом, вытекающее из основной теоремы Фишера следствие, что действие естественного отбора всегда направлено на максимизацию приспособленности, нельзя принимать безоговорочно, и из этого в свою очередь вытекает ряд следствий, которые необходимо учитывать при изучении адаптаций (см. гл. 3). С основной теоремой Фишера связана еще одна концепция — концепция генетического груза (различие между макимальной потенциальной приспособленностью популяции и Ш). Это различие создается любым процессом, порождающим генетическую изменчивость, в том числе мутационным процессом (мутационный груз) и процессом генетической перестройки, обусловленной расщеплением (сегрегационный груз). Как и основная теорема Фишера, а возможно, именно из-за нее, концепция генетического груза небесспорна и вызывает разногласия, а поэтому в дальнейшем мы о ней говорить не будем. [c.48]

    Формула Харди—Вайнберга показывает, что при постоянных условиях в популяции сохраняются первоначальные частоты генов и что любые изменения этих частот возникают лишь под действием внешних факторов. Для того чтобы объяснить наблюдаемое сохранение изменчивости, нет нужды выдвигать какие-либо иные гипотезы, например гипотезу о наследовании приобретенных признаков.. По существу, формула Харди—Вайнберга демонстрирует совместимость менделевской теории наследственности и дарвиновской теории эволюции. Поскольку в большинстве случаев естественный отбор снижает изменчивость в популяции, необходимым условием для непрерывной эволюции остается наличие источника новой изменчивости, даже при корпускулярной природе наследственности. Однако источник этой новой изменчивости может быть значительно скромнее того, который был бы необходим в рамках гипотезы слитной наследственности. [c.80]

    Во введении к своей монографии [1941] Кимура пишет Теория нейтральности утверждает, что большинство эволюционньк изменений на молекулярном уровне, выявляемых при сравнительном изучении аминокислотных последовательностей белков и нуклеотидных последовательностей ДНК, обусловлено не дарвиновским отбором, а случайным дрейфом селективно нейтральных или почти нейтральных мутаций. Эта теория не отрицает роли естественного отбора в определении направления адаптивной эволюции, однако она предполагает, что адаптивную природу имеет лишь незначительная часть эволюционньк изменений первичной структуры ДНК, тогда как громадное боль- [c.20]

    Математические модели отбора дарвиновская приспособленность [c.294]

    Естественный отбор, однако, вроде работает. Дарвин был прав. Я не знаю — почему Это значит, что я не могу свести это к основным принципам науки, имеющей дело с неживой материей (вывести это логически из первых принципов). Нужны новые принципы. Я не в состоянии их сформулировать. Что-то должно изменять существенно вероятность следующей случайной точечной мутации (точнее, ее реализации) после предыдущей. На самом деле это означает су-вдествование началгьного плана. Такой подход подвергся тщательному анализу в начале 29-х годов прошлого века выдающимся русским биологом Львом Бергом. Его фундаментальная работа Номогенез, или эволюция на основе закономерностей [105, 106] была переведена на английский язьщ и опубликована в Великобритании и США. Главное утверждение Берга может быть сформулировано следующим образом. Биологическая эволюция происходит в соответствии со строгими законами, в отличие от дарвиновской эволюции, которая основана на случайны событиях. Борьба за существование и естественный 01 б0р играют в этом процессе вторичную роль и, во всяком случае, прогресс в организации не зависит от борьбы за существование. [c.135]

    М. Бейеринк был, возможно, первым, кто осознал, что изменчивость бактерий может представлять собой проявление генных мутаций. Эту идею он выдвинул в первом десятилетии этого века, вскоре после того, как де Фриз (повторно открывший Менделя коллега Бейеринка) предложил термин мутация для описания наследуемых отклонений у высших форм. (В результате проведенных недавно исторических изысканий было обнаружено, что у Бейеринка имелся оттиск статьи Менделя и что он мог обратить внимание де Фриза на эту статью.) В то время как в течение первых четырех десятилетий этого века генетика высших форм достигла необычайного подъема, генетика бактерий находилась все это время в упадке. В эти годы, по-видимому, мало было людей, способных проводить или хотя бы заинтересованных в том, чтобы проводить на бактериях количественные генетические опыты, аналогичные тем, которые привели к выяснению механизма наследственности у эукариотов. Поэтому еще долго не получало признания то, что корни изменчивости бактерий лежат в мутациях и дарвиновском отборе, —даже после того, как за несколько десятилетий биологи полностью осознали роль генных мутаций как эволюционного источника разнообразия живых форм. О таком положении свидетельствует, например, следующий факт. В обстоятельной книге [c.131]

    На стадии образования бульона еще не существовало ни биологической информации, ни информационной системы, способной ее породить. Вопрос о возникновении биологической информации впервые поставил Кастлер [П26], он же показал, что здесь существует упомянутая выше проблема. Возможные пути решения этой проблемы рассматривались в работах [П64, П65, П47, П22]. Эйгеном [П64] было введено понятие гиперцикл , означающее белковонуклеотидный комплекс, в котором белок способствует комплементарной авторепродукции, а полинуклеотид катализирует синтез белка. Было показано, что среди гиперциклов может протекать дарвиновский отбор и они способны эволюционировать. Гиперциклы являются промежуточными (между живыми и неживыми) объектами. Несмотря на обилие работ, решение основной проблемы остается дискуссионным. Ниже мы рассмотрим возможные пути ее решения, акцентируя внимание на математическом аспекте. [c.27]

    Сформулирована клонально-селекционная теория приобретенного иммунитета, предсказывающая дарвиновский отбор антигенами клеток, продуцирующих специфические антитела. (М. Вернет, Д. Талмейдж, Н. Ерне) [c.39]

    Таким образом, во многих отношениях клетки и многоклеточные организмы могут рассматриваться как самопрограмми-рующиеся многоцелевые информационные системы, способные изменяться во времени. Допустим, что в ДНК-последовательности 5 —AG TAT—3 третье основание С заменено на Т тогда последовательность станет другой, и все ее потомки также будут другими. Иными словами, мутантная (измененная) последовательность передается по наследству всем дочерним молекулам (рис. 2.6). Поэтому на молекулярном уровне дарвиновский отбор можно представить как отбор наиболее приспособленных последовательностей. Самые убедительные доказательства естественного отбора бьии получены в молекулярногенетических исследованиях. [c.58]

    Итак, мы приходим к заключению, что необходимая для приобретения и иммунности, и толерантности соматически обучающаяся программа основана на ключевом взаимодействии (или связывании) антигенов с клонально экспрессирующимися поверхностными молекулами, распознающими антигены (антитела, ТкР). Это достигается в процессе дарвиновского отбора, действующего в популяции лимфоцитов. Это — основной принцип функционирования иммунной системы. Мы объясним в дальнейшем, что обратная связь между генами сомы и половых клеток дает логически последовательное объяснение всех уникальных молекулярно-генетических свойств иммунной системы. Но, прежде чем вести читателя дальше, мы должны потратить немного времени на описание деталей строения ДНК-последовательностей генов и ТкР и некоторых необычных свойств этих генов. [c.102]

    Процесс удаления интронов называется сплайсингом РНК. Сплайсинг чрезвычайно точен, он редко разрезает РНК в неправильном месте. Сейчас известно, что для обозначения границ интронов существует сигнальная последовательность, узнаваемая особым ферментным комплексом (сплайсосомой). Некоторые интроны являются рибозимами (РНК-фермента-ми), способными к самосплайсингу. Возможно, это реликты мира РНК , существовавшего много миллиардов лет назад. Часто сплайсосомы состоят из РНК и белка. Отметим один очень важный момент места сшивок (разрезаний), которые закодированы в ДНК-последовательности, разрезаются сплайсо-сомами, действующими на одноцепочечные последовательности РНК, только после транскрипции. Двухцепочечная ДНК генома никогда не разрезается в этих местах. Все гены, представленные одной копией (рис, 4.4), кодируют белки, необходимые для выполнения функций домашнего хозяйства клетки или многоклеточного организма. Именно эти гены являются предметом решения жизнь или смерть при дарвиновском отборе. Например, гены, кодирующие белковые субъединицы молекулы гемоглобина (которая переносит кислород от легких ко всем органам тела), представлены одной копией. Поврежденные молекулы, появившиеся в результате мутаций, обычно неэффективно переносят кислород и, следовательно, приводят к гибели организма или снижают его жизнеспособность. [c.103]

    ИЛИ же она отражает отбор самой приспособленной ДНК данного вида (дарвиновская гипотеза, поддерживаемая селекционерами ), по-поежнему остается предметом дискуссии (ср. с работами [481, 4821). [c.200]

    С глубоким и всесторонним развитием в наше время физики твердого тела неожиданно, многие ничем не привлекавшие к себе внимания твердые вещества, как, например, кремний и др., в технике вдруг засверкали подобно ограненному алмазу. Из многих тысяч веществ, прошедших через испытания в лабораториях, были отобраны десятки твердых кристаллических веществ с полупроводниковыми свойствами — 51, Ое, СаАз, 1п5Ь и т. д., главным образом по замечательному правилу — сумма валентностей в бинарных системах равна восьми. Для сверхпроводниковой техники в результате испытаний отбирались системы сплавов с оловом и ниобием — ЫЬ -Ь V, ЫЬ Ч- 5п, ЫЬ -Ь 2г, ЫЬ, 5п и т. д. То же повторяется с материалами, твердыми веществами в квантовой электронике и других областях, В науке превалирует дарвиновский длительный неестественный принцип отбора. [c.5]

    Эклектический характер эволюционных воззрений Геккеля отмечался неоднократно. Та глава Естественной истории ми- ротворения , ссылка на которую только что приведена, демонстрирует с полной отчетливостью неудачную попытку Геккеля примирить дарвиновскую теорию естественного отбора с ламар-ковским допущением прямого приспособления по желанию животного. Приспособляясь к измененным условиям питания путем длительной привычки, упражнения и т. д., пишет Геккель, воля животных может повести к чрезвычайно сильным изменениям органических форм . [c.140]

    Экспериментальное применение химических мутагенов в естественном отборе сыграет роль в преодолении некоторых ошибок в оценке мутационного начала в эволюции и даже обогатит известными выводами теорию дарвиновской эволюции. Скорее всего от этого выиграет также мутационная генетика, поскольку это обещает более точную оценку полезных потенщшлов различных химических мутагенов. г,, [c.33]

    Между тем идеи и открытия Либиха, как показывает Энгельс, имели прямое отношение и к биологическим концепциям. В письме Лаврову от 12—17 ноября 1875 г. Энгельс писал В учении Дарвина я принимаю теорию развития, дарвиновский же способ доказательства (борьба за существование, естественный отбор) считаю всего лишь первым, временным, несовершенным выражением только что открытого факта. До Дарвина именно те люди, которые теперь повсюду видят только борьбу за существование (Фогт, Бюхнер, Молешотт и т. д.), делали ударение как раз на сотрудничестве в органической природе, указывая на то, как растения доставляют животным кислород и пищу и, наоборот, животные доставляют растениям углекислоту и удобрения, как это особенно подчеркивал Либих. Обе эти концепции в известных границах до известной степени правомерны, но как та, так и другая одинаково односторонни и ограниченны. Взаимодействие тел природы — как мертвых, так и живых — включает как гармонию, так и коллизию, как борьбу, так и сотрудничество . [c.151]

    Однако открытие Менделя, которое должно было бы произвести переворот в науке о наследственности, слишком опередило свое время. Полученные им результаты и сделанные им выводы оставались незамеченными биологами в течение целых тридцати пяти лет после их опубликования в Трудах Общества естествоиспытателей Брно. В частности, Чарлз Дарвин, наиболее выдающийся из современных Менделю биологов, который сразу же снискал славу своей теорией эволюции, так и пе узнал ничего об открытии Менделем наследственных единиц, с которыми на самом деле оперирует дарвиновский естественный отбор. Дарвин считал, что каждая часть взрослого организма образует геммулы (почечки), которые собираются в семени для передачи потомству. Такое пангене-зисное представление Дарвина о механизме наследственности мало чем отличалось от взглядов, развитых Гиппократом двадцатью тремя веками ранее. [c.18]

    В то же время Дарвин знал и писал об изменениях признаков, не снижающих жизнеспособность и фертильность организма и не подпадающих под действие отбора (нейтральных, как мы их сейчас называем). Оценка их роли в эволюционных изменениях — предмет дискуссии. Но даже если мы вслед за сторонниками теории нейтральности во главе с Кимурой примем, что нейтральные мутации — основной источник разнообразия в природе, то дарвиновский принцип эволюции сохранится. Целесообразность без отбора нельзя объяснить, не привлекая вмешательства разума . Поэтому нейтральность и селекционизм не [c.6]

    Известно, что в соматических клетках иногда возникают случайные мутации. Полезные мутации, т. е. мутации, благоприятные для несущей их клетки, могут распространиться, так как они дают возможность своим носителям делиться быстрее, чем другие клетки это в особенности относится к клеткам, участвующим в борьбе с инфекцией. Чем больше они преуспевают, тем более многочисленными они могут оказаться. Таким образом, мутантный ген размножается, а при этом повышаются его шансы на то, что он будет захвачен вирусами и перенесен в другие клетки, возможно в том числе и в клетки зародышевой линии. По-видимому, у любого индивидуума существует период отбора соматических мутаций, предшествующий прохождению мутаций сквозь фильтр дарвиновского естественного отбора. Стеель считает, что этот процесс должен ускорять эволюцию и позволяет легче объяснить эволюцию таких сложных и координированных органов, как глаз. [c.39]


Смотреть страницы где упоминается термин Дарвиновский отбор: [c.266]    [c.95]    [c.129]    [c.132]    [c.136]    [c.36]    [c.19]    [c.136]    [c.138]    [c.19]    [c.22]    [c.36]    [c.30]    [c.76]   
Генетика человека Т.3 (1990) -- [ c.21 ]




ПОИСК







© 2025 chem21.info Реклама на сайте