Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

клеток регуляция

    Как показано на рнс. 15-22, хромосома обычно подразделяется на четыре оперона короткий — продуцирующий репрессор, ранний левый, ранний правый и поздний ). Ранние опероны детерминируют в основном синтез ферментов, обеспечивающих репликацию и рекомбинацию, а также синтез регуляторных белков. Поздний оперон связан с синтезом белков, необходимых для организации вирусных частиц он должен транскрибироваться с более высокой скоростью, которая обеспечивается Продуктом гена Q. В пределах позднего оперона гены от А до F участвуют в упаковке ДНК фага Айв образовании головок, тогда как гены от 2 до / обеспечивают синтез и сборку отростков. Гены S -а. R продуцируют белки, вызывающие разрушение мембраны бактерии-хозяина и лизис клетки. На последних стадиях фазы литического развития большая часть ранних генов выключается другим репрессором фага X (кодируемым геном его). Из сказанного видно, что регуляция транскрипции даже у вирусов может представлять собой достаточно сложный процесс. [c.261]


    Очевидная роль терминаторов транскрипции состоит в прекращении синтеза РНК в концах оперонов, что обеспечивает независимую регуляцию экспрессии различных участков ДНК- Но терминаторы встречаются и внутри оперонов. Эффективность этих внутренних терминаторов может регулироваться, что позволяет клетке изменять [c.154]

    Наиболее простой цикл репликации / транскрипции вирусной РНК — это когда с геномной РНК снимается комплементарная копия и эта копия, в свою очередь, служит матрицей для синтеза геномной РНК роль мРНК в образовании всех необходимых для размножения вируса белков выполняет родительская РНК. Если отвлечься от частностей, то этот принцип реализуется у фага Ор и у вируса полиомиелита. Однако стратегии этих вирусов различаются в одном существенном отношении. Фаг Ор размножается в клетках прокариот, поэтому его (+)РНК может функционировать как истинная полицистронная мРНК. Хозяин вируса полиомиелита — эукариотная клетка. Соответственно на (+)РНК этого вируса имеется единственная точка инициации трансляции, и все зрелые вирус-специфические белки возникают в результате ограниченного протеолиза единого полипротеина-предшественника. Как и у ДНК-содержащих вирусов, у вирусов с РНК-геномом разные вирус-специфические белки требуются в разных количествах и в разное время, а образование всех этих белков из единого предшественника затрудняет количественную и временную регуляцию их производства. Поэтому у РНК-содержащих вирусов эукариот возникли механизмы, обеспечивающие появление разных мРНК для [c.331]

    Ионы Са2+ играют важную роль в регуляции многих биохимических реакций, протекающих в клетке. В поддержании низкой по сравнению с внеклеточным пространством концентрации ионизированного Са + в цитоплазме принимают участие митохондрии. Эти внутриклеточные органеллы способны аккумулировать большие количества Са + и вместе с тем им принадлежит решающая роль в обеспечении энергетических потребностей клетки в целом. Накопление Са + в митохондриях существенно влияет на активность многих ферментов, локализованных в матриксе и катализирующих отдельные стадии цикла трикарбоновых кислот, окисления кетокислот с разветвленной цепью, липолиза и др. Ярким примером участия Са + в регуляции собственных метаболических функций митохондрий является торможение окислительного фосфорилирования. [c.476]

    Скорость транскрипции регуляторных генов обычно очень низка, но держится на постоянном уровне. Возможно, это объясняется тем, что РНК-полимераза медленнее инициирует синтез цепей РНК на промо-торных участках регуляторных генов. Так, в каждой клетке Е. соН в норме содержится всего лишь около 10 молекул /ас-репрессорного белка. Поскольку репрессоры имеют очень важное значение для регуляции метаболизма, регуляторные гены представляют чувствительные участки для мутаций. Так, например, мутация регуляторного гена может привести к образованию дефектного репрессора, неспособного более [c.202]


    Уменьшение числа рецепторов обычно происходит вследствие интернализации комплекса рецептор — лиганд, что показано, например, в случае рецепторов инсулина и фактора роста нерва (NGF). Впоследствии этот комплекс разрушается лизосомами. Цель этого механизма регуляции, без сомнения, состоит в компенсации избытка лиганда путем ослабления ответа клетки. Регуляция активности рецептора с помощью изменения сродства, например десенсибилизация ацетилхолинового рецептора посредством инкубации с ацетилхолином (см. с. 263), служит той же цели. Десенсибилизация описана для многих рецепторов. В 5-адренэргическом рецепторе она основана на синергическом уменьшении сродства к медиатору и на увеличении сродства к аденилатциклазе, связанном с фосфорилированием рецептора. [c.299]

    Регуляция жизнедеятельности сложного многоклеточного организма в огромной степени зависит от химических сигналов, передаваемых от одних клеток к другим. Один из основных способов коммуникации — это секреция гормонов в кровоток. Значительно менее изучен процесс химического обмена информацией через межклеточные контакты (гл. 1, разд. Е, 3, в). Этот процесс лучше всего исследован на нервных клетках, и в настоящее время нейрохимия стала одним из основных направлений биохимии. Коммуникация между клетками играет большую роль в эмбриональном развитии и в дифференцировке тканей. Правда, рост и развитие клеток регулируются не только внешними, но и внутренними факторами последние определяются программами развития, закодированными в ДНК. В настоящей главе мы рассмотрим кратко как упомянутые вопросы, так и коммуникацию между организмами, т. е. биохимию экологических взаимосвязей. [c.316]

    Указанные положения составляют основу современной концепции адсорбционного механизма регуляции активности ферментов в клетке, в том числе и гексокиназы тканей млекопитающих. [c.374]

    Опыты с искусственными генными конструкциями, составленными из отрезков ДНК разного происхождения, выявили существование особого цис-действующегоэлемента регуляции генов эукариот, получившего название усилителя (энхансера) или активатора транскрипции. Энхансеры представлены короткими последовательностями ДНК, состоящими из отдельных элементов (модулей), включающих десятки нуклеотидных пар. Модули могут представлять собой повторяющиеся единицы. Энхансер увеличивает эффективность транскрипции гена в десятки и сотни раз. Впервые энхансеры были обнаружены в составе геномов животных ДНК-содержащих вирусов (5У40 и полиомы), где они обеспечивают активную транскрипцию вирусных генов. Извлеченные из вирусных геномов и включенные в состав искусственных генетических конструкций, они резко усиливали экспрессию ряда клеточных генов. Позднее были обнаружены собственные энхансеры генов эукариотической клетки. Особенность энхансеров состоит в том, что они способны действовать на больших расстояниях (более чем 1000 п. н.) и вне зависимости от ориентации по отношению к направлению транскрипции гена. Оказалось, что энхансеры могут располагаться как на 5 -, так и на З -конце фрагмента ДНК, включающего ген, а также в составе интронов (рис. П2, а). Например, энхансеры были выявлены в районе 400 п. н. перед стартом транскрипции генов инсулина и химо-трипсина крысы. В случае гена алкогольдегидрогеназы дрозофилы энхансер был локализован за 2000 п. н. перед промотором. Энхансеры обнаружены на З ч )ланге гена, кодирующего полипептидный гормон-плацентарный лактоген человека, а также в составе интронов генов иммуноглобулинов и коллагена. [c.203]

    Важное биологическое значение нуклеиновых кислот состоит в том, что они осуществляют хранение и передачу наследственной имформации, а также определяют синтез нужных белков в клетке я его регуляцию. По химическому строению нуклеиновые кислоты представляют собой линейные неразветвлет1ые) цепочки, составленные из остатков большого числа нуклеотидов указанных выше типов. Как и для белков, для нуклеиновых кислот характерна первичная и вторичная структура. Важнейшей характеристикой данной нуклеиновой кислоты является ее первичная структура, т. е. последовательность чередования входящих в ее состав четырех типов нуклеотидов. На стр. 442 и 443 для иллюстрации приведены фрагменты цепочек ДНК и РНК- [c.441]

    При каждом клеточном делении каждая молекула ДНК должна удваиваться, т. е. на каждом ориджине должен происходить в точности один акт инициацни репликации. В противном случае постепенно происходила бы утеря репликона или его бесконтрольное накопление. Более того, даже если репликон удваивается в среднем точно один раз на каждое клеточное деление, возможны существенные вариации количества копий этого репликона вокруг среднего значения в разных клетках бактериальной популяции. Такие вариации недопустимы, так как тоже в конце концов ведут к потере репликона. Таким образом, к регуляции репликации предъявляются достаточно жесткие требования регуляторная система должна чувствовать отклонения в обе стороны от среднего числа копий данного репликона и соответствующим образом менять частоту инициации на ориджине. Очевидно, что частота инициации должна быть согласована также со скоростью роста клеток. [c.63]


    В комплексной среде бактериальные клетки часто используют имеющиеся субстраты последовательно. Присутствие определенных субстратов может привести к подавлению синтеза ферментов, участвующ%их в метаболизме других питательных веществ. В этом случае ферменты, катализирующие метаболизм некоторых веществ, начинают действовать лишь после того, как концентрация субстратов, репрессирующих их синтез, уменьшится в результате использования клетками. Регуляция физиологии бактерий приводит к изменениям кривой роста и появлению одной или нескольких переходных (т. е. временных) стационарных фаз. Такой ответ культуры на изменение состава среды называют диауксией. Классическим примером диауксии может служить рост Es heri hia oli в присутствии глюкозы и лактозы (рис. 10.2). Сначала происходит рост культуры за счет использова- [c.381]

    Характер образующихся транскриптов и способ регуляции транскрипции сильно зависят от того, имеем ли мы дело с вирусом прокариот или вирусо.м эукарнот. Дело в том, что в клетках прокариот возможна множественная внутренняя инициация трансляции на полицистронных матрицах, тогда как в эукариотных молекулах РНК обычно реализуется единственная точка инициации трансляции и эти молекулы, как правило, функционально моноцистронны. [c.290]

    Плазмалеммой, или плазматической мембраной, называют структуру, охватывающую все живое содержимое клетки. Ее самая важная роль в растительной клетке — регуляция разности внутриклеточной и внеклеточной концентрации неорганических солей и органических веществ. Перенесенный через плазмалемму материал обычно в дальнейшем распределяется по отдельным отсекам клетки с помощью других специализированных мембранных систем клетки, по именно плазмалемма должна в конечном счете справиться с переносом всего входящего и выходящего из клетки материала. То, что она может каким-то образом удовлетворять нужды клетки в условиях довольно резких изменений внешней среды, предполагает наличие сложного регулирующего механизма. [c.52]

    В клетках (как и в пищеварительном канале) нуклеиновые кислоты постоянно подвергаются атаке со стороны различных нуклеаз. Например, существенным фактором в регуляции синтеза белков является разрушение— как правило, довольно быстрое — информационных РНК-Хотя ДНК сама по себе очень устойчива, нуклеазы призваны вырезать поврежденные сегменты из одиночных цепей, что является важной частью процесса репарации ДНК (гл. 15, разд. 3,2). Таким образом, наблюдается активное расщепление полинуклеотидов на мононуклеотиды, гидролизуемые далее фосфатазами до нуклеозидов. Нуклеозиды превращаются в свободные основания под действием нуклеозидфосфорилаз [уравнение (14-52)]. Дальнейший распад цитозина начинается его де- [c.166]

    Закономерное сочетание деятельности субклеточных частиц лежит в основе жизнедеятельности клетки, регуляции обмена веществ в ней, быстрой перестройки клетки на новые стационарные режимы функционирования, [c.21]

    Важный вопрос организации хроматина касается судьбы нуклеосом при транскрипции. Электронная микроскопия интенсивно транскрибирующихся участков хроматина, например рибосомных генов, ясно показывает, что нуклеосом на них нет даже в тех случаях, когда между молекулами РНК-полимеразы, движущимися одна за другой по гену, виден промежуток. Необходимо отметить, Что регуляция активности рибосомных генов осуществляется в клетке путем изменения числа работающих генсв, но не интенсивности транскрипции. Однако промоторы рнбосомных генов всегда находятся в активной конформации (свободны от гистонов). [c.254]

    Наследственный аппарат эукариотических клеток существенно отличается от прокариотических хромосом. Наиболее очевидное отличие — огромное количество ДНК в эукариотических клетках. Например, гаплоидный геном человека состоит из З-Ю пар ос-иований (п. о.), тогда как геном . соИ включает всего 10 п. о. Кроме того, геном эукариот разделен на несколько хромосом, которые претерпевают характерные циклы конденсаций и декон-Денсаций в ходе деления клеток. Наконец, в клетках эука-РНот больше генов и их регуляция значительно сложнее, чем у прокариот. [c.233]

    Мет — Асп — Тре — ОН (мол. м. 3485 букв, обозначения см, в ст. а-Аминокислоты). Для сохранения биол, активности Г. необходима структурная целостность его молекулы. Секретируется а-клетками островков поджелудочной железы, В-во, подобное Г,, вырабатывается также в слизистой оболочке кишечника. Г, участвует в регуляции углеводного обмена, является физиол, антагонистом инсулина. Усиливает распад и тормозит синтез гликогена в печени, стимулирует образование глюкозы из аминокислот и секрецию инсулина, вызывает распад жиров. При введении в организм повышает уровень сахара в крови, [c.139]

    ИЗОФЕРМЕНТЫ, разные формы одного и того же фермента, отличающиеся структурой полипептидной цепи или составом субъединиц. Присутствуют в организмах одного вида или в одной клетке различны по каталитич. активности. Наличие И.— один из способов регуляции ферментативной активности. Использ. для диагностики нек-рых заболеваний. [c.215]

    Выщеизложенное свидетельствует о том. что жесткая локализация АЦ в мембране дает ей возможность быстро и избирательно реагировать на uxo.i Са" в клетку. Регуляция активности АЦ внутриклеточным Са" [c.19]

    ДНК бакуловирусов реплицируется в ядре хозяйской клетки. Регуляция экспрессии генов у АсКРУ, подобно большинству крупных ДНК-содержащих вирусов, осуществляется по каскадному типу. Предранние а-гены активируются факторами клетки-хозяина, и для их экспрессии не требуется предварительный синтез вирусных белков. Продукты а-генов активируют запаздывающие ранние у8-гены и некоторые поздние у-гены. Экспрессия поздних генов связана с синтезом вирусной ДНК. Бакуловирусы уникальны тем, что имеют четвертый временной класс генов — так называемые очень поздние б-гены, которые обусловливавот образование тел включения и упаковку в них вирионов. [c.416]

    Какие еще белки кроме гистонов обнаруживаются в клеточных ядрах Методом электрофореза в полиакриламидном геле было установлено, что в ядрах клеток НеЬа содержится около 450 компонентов, большинство из которых присутствует в небольших количествах (<10 000 молекул в расчете на одну клетку) и не обнаруживается в цитоплазме [302]. К наиболее кислым белкам относится большое число ферментов, включая РНК-полимфазу. Кроме того, в ядрах содержатся 1) определенные репрессоры генов, в основном не идентифицированные, 2) бел ки, связывающие гормоны, и 3) многие другие белки [303]. Наряду с ядерными белками, которым уделяется обычно основное внимание, определенную роль в регуляции фенотипического выражения генов играет также мало исследованный класс небольших ядерных РНК. Молекулы этой РНК длиной от 65 до 200 нуклеотидов могут стимулировать транскрипцию специфических генов, связываясь с комплементарными участками ДНК. Таким образом, информация, транскрибированная с одного участка хромосомы, может оказывать влияние на процессы, протекающие на другом участке или на другой хромосоме [303а]. [c.304]

    К числу других важных соединений с регуляторной функцией относятся витамины, тиамин, пиридоксин и никотиновая кислота, которые синтезируются в листьях и транспортируются вниз по стеблю в корни. Поскольку эти вещества способствуют разрастанию корней, их иногда называют гормонами роста корней. Однако значительно чаще их рассматривают как питательные вещества, необходимые всем клеткам. Имеются убедительные данные о существовании специального гормона цветения сравнительно недавно возник интерес к изучению влияния синтетических растительных биорегуляторов , к которым относятся производные хальконов (дополнение 12-Б) и такие соединения, как диэтилоктиламин [24]. Следует указать также на существование еще одного важного аспекта регуляции роста растений, связанного с влиянием света на этот процесс, а именно на фотоморфогеиез. [c.324]

    Белок-активатор катаболитных оперонов (БАК) в комплексе с Циклическим сАМР активирует транскрипцию большого числа оперонов, отвечающих за расщепление различных соединений, преимущественно сахаров, используемых бактериальной клеткой в качестве источников энергии и углерода. Концентрация с A.V1P в клетках повышается при росте на плохо усваиваемых источниках, например ацетате или глицерине, и снижается прн росте ни легко усваиваемых, наприр ер 1 люкозе. Поэтому система регуляции с помощью БАК-сАМР позволяет клетке включать опероны катаболиз.ма лишь по мере истощения более легко усваиваемых пищевых веществ. [c.148]

    Экспрессия самых разных генов может регулироваться путем выбора альтернативных путей сплайсинга. Например, явление альтернативного сплайсинга обнаружено при экспрессии гена, кодирующего основной белок мнелиновых мембран, окружающи.х аксон и обеспечивающих эффективное проведение сигнала на большие расстояния. В результате спла11сннга синтезируются четыре формы основного белка миелина, специальные функции которых пока не исследованы.. Альтернативный сплайсинг обеспечивает также разные пути экспрессии генов, кодирующих патипептидные гормоны, белки ионных каналов клетки, а также ядерные белки, участвующие в регуляции действия генов, определяюши.х ключевые стадии развития. [c.183]

    В геноме SV40 закодировано шесть белков. На ранней стадии образуются два белка, так называемые большой (Т) и малый (Л антиген ны. Затем — после начала репликации вирусной ДНК — идет синтез главным образом трех структурных белков вариона (VPI, VP2 и VP3). Функция и динамика синтеза шестого белка — агнопро-теина—изучены недостаточно. Регуляция экспрессии вирусного генома осуществляется прежде всего на уровне транскрипции. Так, вскоре после инфекции в зараженных клетках начинают накапли- [c.299]

    Известно больщое число ферментов со < сложной негиперболичес-кой кинетикой. Одна из причин отклонения от кинетики Михаэлиса— Ментен может быть связана с аллостерическими свойствами фермента. Для регуляторных ферментов кривая зависимости скорости реакции от концентрации субстрата часто имеет сигмоидальную форму. При наличии 5-образности резкое увеличение активности происходит в узкой области концентрации субстрата, что может иметь важное значение для функционирования фермента в клетке. В аллостерической регуляции ферментативной активности принимают участие не только [c.214]

    Ранее уже упоминалась роль хемотаксиса в функционировании защитной системы человеческого организма (дополнение 5-Ж). Этому несколько противоречит постулат, что каждая клетка продуцирует тканеспецифичный гормон местного действия, называемый келоном, который ингибирует митотическую активность других клеток той же ткани. Полагают, что эти гормоны играют важную роль в регуляции деления клеток и предотвращении злокачественного роста. Выделено несколько келонов, оказавшихся белками или пептидами различного молекулярного веса [161, 162]. [c.358]


Смотреть страницы где упоминается термин клеток регуляция: [c.257]    [c.46]    [c.143]    [c.282]    [c.66]    [c.120]    [c.132]    [c.154]    [c.181]    [c.186]    [c.200]    [c.201]    [c.206]    [c.251]    [c.9]    [c.47]    [c.136]    [c.448]    [c.500]    [c.625]    [c.317]    [c.348]   
Иммунология (0) -- [ c.234 ]




ПОИСК





Смотрите так же термины и статьи:

Регуляция



© 2025 chem21.info Реклама на сайте