Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фотосинтез транспорт электронов

    Возвращаясь к физиологическим фотореакциям, отметим, что естественный отбор сконструировал и изготовил специализированные механизмы реализации действия света двух типов с усилением и без него. Последний работает, например, в фотосинтезе (транспорт электронов с фотосинтетическим фосфорилированием), который с известными энергетическими потерями запасает в органических молекулах лишь часть энергии света (около 30-40%). [c.374]


    На рис. 189 представлена более современная модель транспорта электронов при фотосинтезе. [c.346]

    Модель транспорта электронов при фотосинтезе [c.346]

    Из множества различных схем, предложенных для транспорта электронов при фотосинтезе, большинству известных данных удовлетворяет лишь зигзагообразная 2-схема (рис. [c.342]

    В течение длительного времени считали, что АТФ и другие высокоэнергетические соединения, находящиеся в равновесии с ним, представляют собой единственную форму энергии, которая может использоваться живыми клетками во всех энергозависимых процессах. Вопрос о характере связи между транспортом электронов, с одной стороны, и превращением фосфорных соединений, с другой, долгое время оставался неясным. Было установлено, что использование энергетических ресурсов (органических или неорганических соединений при дыхании, света при фотосинтезе) связано с переносом электронов по цепи, состоящей из белковых и небелковых компонентов, способных к обратимому окислению — восстановлению. В результате этого переноса освобождающаяся на отдельных участках дыхательной или фотосинтетической цепи энергия трансформируется в химическую энергию фосфатных связей АТФ. Молекулярный механизм фосфорилирования, сопряженный с электронным транспортом, был неизвестен. [c.100]

    Начальные этапы процесса фотосинтеза осуществляются при непосредственном участии белково-пигментных комплексов фотосинтетических мембран. Энергия света первоначально поглощается светособирающим комплексом и передается далее на реакционные центры, где она с очень высокой эффективностью используется дпя транспорта электронов через мембрану. [c.634]

    Во второй части рассматриваются биоэнергетика и метаболизм клеток- основное блюдо биохимии. После изложения принципов клеточной биоэнергетики следует детальное описание гликолиза, цикла трикарбоновых кислот, транспорта электронов и окислительного фосфорилирования. Далее идут главы, в которых рассматривается катаболизм жирных кислот и аминокислот, а затем главы, посвященные биосинтетическим процессам и фотосинтезу. Подробно обсуждаются метаболические последовательности и принципы их регуляции. [c.8]

    Как указывалось, существенным моментом рассмотренных схем является раздельное получение кислорода и водорода в фотопроцессе. В этом отношении они являются моделью первичных стадий фотосинтеза. Если бы удалось разобщить транспорт электронов в фотосинтезирующей системе, то можно было бы ограничить фотосинтез только первичными процессами. Задача фотосинтетического получения молекулярного водорода свелась бы к организации фотокаталитического процесса переноса электронов от воды на протоны. Березин и Варфоломеев [71] предлагают несколько вариантов биофотолиза воды. Один из них представлен на рис. I. 8. [c.47]


Рис.42. Схема транспорта электрона при фотосинтезе Пх -пластохинон Пц - пластоцианин д - ферредоксин Рис.42. <a href="/info/191226">Схема транспорта электрона</a> при фотосинтезе Пх -пластохинон Пц - пластоцианин д - ферредоксин
    Схема нециклического транспорта электрона в фотосинтезе высших растений и водорослей выражается уравнением [c.206]

    Система транспорта электронов участвует в двух световых реакциях, обозначенных на схеме фотосинтеза системой II и системой I, которые различаются по величине восстановительного потенциала [c.57]

    К настоящему времени выяснена основная коферментная роль KoQj . Он оказался обязательным компонентом дыхательной цепи (см. главу 9) осуществляет в митохондриях перенос электронов от мембранных дегидрогеназ (в частности, НАДН-дегидрогеназы дыхательной цепи, СДГ и т.д.) на цитохромы. Таким образом, если никотинамидные коферменты участвуют в транспорте электронов и водорода между водорастворимыми ферментами, то KoQj благодаря своей растворимости в жирах осуществляет такой перенос в гидрофобной митохондриальной мембране. Пластохиноны выполняют аналогичную функцию переносчиков при транспорте электронов в процессе фотосинтеза. [c.243]

    Два образца одного и того же вещества, находящиеся в разных условиях, могут иметь несколько разные максимумы поглощения, а также несколько разные интенсивности поглощения, но эта разница столь мала, что ее трудно заметить при изучении этих спектров по отдельности. Однако вариации в этих величинах гораздо легче уловить, если один из образцов использовать в качестве стандарта, против которого снимается спектр другого образца. Получаемые при этом дифференциальные спектры являются очень высокочувствительным средством, с помощью которого обнаруживают небольшие изменения в светопоглощающих свойствах. Например, дифференциальные спектры свет — темнота , в которых сравнивают поглощение света освещенным образцом и образцом, содержащимся в темноте, оказались чрезвычайно ценными при выявлении незначительных изменений этой величины, которые имеют место при освещении фотосинтезирующих тканей или частиц. Дифференциальные спектры окисленных и восстановленных форм были использованы для получения информации об участии цито-хромов в цепи переноса электронов и об окислительно-восстановительном состоянии отдельных цитохромов в определенных условиях. С помощью этого основного метода и многих его изощренных модификаций мы узнали очень много нового о физических состояниях пигментов и их функционировании в фотосинтезе и транспорте электронов. [c.26]

    Система тилакоидных мембран хлоропласта превраш,а-ет энергию света в форму, которая может быть использована для осушествления химических реакций. Целиком процесс фотосинтеза был схематически представлен на рис. 10.1. В приводимом ниже обсуждении фотосинтеза рассматриваются три стадии. Первая стадия представляет собой световую реакцию — первичный процесс, с помош,ью которого энергия света поглощается светособирающими пигментами и переносится на фотохимические реакционные центры. На второй стадии поглощенная энергия света используется для осуществления транспорта электронов от воды до NADP+. В ходе электронного транспорта устанавливается градиент заряда, или концентрации протонов, через функциональные везикулы мембраны. Третья стадия представляет собой путь, по которому NADPH, образованный электронтранспортной системой, и АТР, генерируемый за счет различий электрохимического потенциала протонного градиента, используются для фиксации СО2 и синтеза углеводов. Хотя в целях упрощения процесс фотосинтеза разбит на три стадии, необходимо помнить, что поглощение света, транспорт электронов и генерация электрохимического градиента в действительности очень тесно сопряжены. [c.333]

    Фотосинтез происходит в органоидах растительных клеток, именуемых хлоропластами. На рис. 14.11 приведена электронная микрофотография среза хлоропласта из листа кукурузы. Диаметр хлоропласта 3 — 10 мкм, толщина 1,5—3 мкм. Хлоропласт заполняет почти всю клетку зеленой водоросли. На рис. 14.11 видны примерно параллельные ламеллы, погруженные в более светлую строму. У высших растений ламеллы образуют стопки, называемые гранами. Ламеллы представляют собой сечения уплощенных замкнутых мешочков — тилакоидов имеющих диаметр около 500 нм. Их число в хлоропласте порядка 1000. Модель структуры хлоропласта показана на рис. 14.12. Процессы фотосинтеза локализованы в мембранах тилакоидов, в которых содержатся активные пигменты, прежде всего хлорофилл. Фрагменты тилакоидов реализуют реакции фотоиндуцированного транспорта электронов и сопряженное с ним фотофосфорилирование. В мембранах находятся светособирающие и электроннотранспортные комплексы, и АТФ-синтетазы хлоропластов. [c.458]


    Многие жизненно важные природные соединения содержат фрагменты из четырех связанных вместе пиррольных колец, которые иногда могут быть в восстановленной форме. Такие тетрапиррольные фрагменты встречаются в переносящих кислород белках (например, в гемоглобине), в цитохромах (белках, отвечающих за транспорт. электрона в цепи дыхания), в хлорофиллах и бактериохлорофиллах (молекулах, непосредственно участвующих в процессах фотосинтеза в растениях и фотосинтезирующих бактериях), в витамине В12 (витамине, препятствующем возникновению злокачественного малокровия), в-пигментах желчи и в некоторых токсинах морских организмов. На рис. 13.1 в качестве примеров приведены некоторые важные природные тетрапиррольные соединения, а также пример фталоцианина. Фталоцианины не являются природными тетра-пиррольными соединениями они синтезируются в большом масштабе и используются как красители. [c.285]

    Основные пути транспорта электронов в ходе первичных процессов фотосинтеза показаны на рис. 12.14. Это известная Z- xeлia-результат исследований, в которых использовались методы импульсной спектро-фотометрии, а также искусственные доноры и акцепторы электронов и специфические ингибиторы. Она дает представление об окислительновосстановительных потенциалах пигментов и переносчиков электронов и о последовательнос1 и их окисления и восстановления, но ничего не говорит о локализации этих компонентов в мембране. [c.388]

    Фотосинтетический транспорт электронов у анаэробных фототрофных бактерий во многих отношениях отличается от только что описанного. В аноксигенном фотосинтезе участвует только одна световая реакция она поддерживает циклический транспорт электронов. Электроны, покидающие цикл для восстановления NAD, не являются продуктом разложения воды, Фотосинтез зависит от наличия в среде восстановленных субстратов и не сопровождается выделением Oj. Собственно фотореакция хотя и аналогична первой фотореакции у зеленых растений, однако у некоторых бактерий она приводит, вероятно, лишь к созданию протонного потенциала и тем самым к запасанию энергии (АТР), но не к восстановлению NAD. Таким образом, нециклический перенос электронов (от донора электронов к пиридиннуклеотиду) здесь отсутствует. По-видимому, NADHj образуется в результате какой-то темновой реакции в ходе обратного транспорта электронов, протекающего с затратой энергии. [c.390]

    Фотореакция у зеленых бактерий. Механизмы фотореакции у зеленых бактерий еще не полностью выяснены. Есть указания на то, что первичный акцептор электронов, участвующий в световой реакции, у зеленых серобактерий обладает потенциалом около — 500 мВ (у пурпурных бактерий-всего лишь — 100 мВ ). При столь больщом отрицательном потенциале становится возможным прямое использование электронов от первичного акцептора для восстановления ферредоксина и пиридиннуклеотида (рис. 12.17). Таким образом, восстановительную силу hlorobia eae, возможно, получают не путем обратного транспорта электронов, требующего затрат энергии. Такая независимость от обратного транспорта электронов была бы важной отличительной чертой фотосинтеза у зеленых бактерий по сравнению с пурпурными. Тогда фотореакция у hlorobia eae не уступала бы по своей эффективности первой фотореакции цианобактерий. С эволюционной точки зрения фотосинтез зеленых бактерий мог бы быть связующим звеном между фотосинтезом пурпурных бактерий и фотосинтезом цианобактерий и растений  [c.392]

    Эти явления находят удовлетворительное объяснение, если считать, что в процессе фотосинтеза, идущего с выделением кислорода, протекают по крайней мере две последовательные фотореак-ции в двух редокс-системах за счет света, аккумулированного в двух реакционных центрах (рис. 1.5). В условиях нативного фо- тосинтеза складывается определенный баланс скоростей транспорта электрона в каждой системе, что и дает возможность осуществлять синтез ассимиляционного фактора и выделять кислород в оптимальном режиме, соотнесенном с последующей ассимиляцией СОг. Концепция двух взаимодействующих фотосистем, выдвинутая в 1960 г. Хиллом и Бенделом из теоретических соображений [41], поддерживается в настоящее время большинством [c.25]

    Например, пластохинон А не обнаружен в фотосинтезирующих бактериях, но найден в хлоропластах тех организмов, которые в процессе фотосинтеза выделяют кислород. Далее, этот переносчик необходим в тех системах, у которых восстановление НАДФ сопровождается выделением кислорода. Если в качестве восстановителя хлорофилла активных центров фотосистемы I работает не система И, а используются другие доноры электрона, то оказывается, что пластохинон А не участвует в транспорте электрона. Наконец, in situ пластохинон А восстанавливается коротковолновым излучением, активирующим фотосистему II, и окисляется длинноволновым излучением, отвечающим фотосистеме I. Такой анализ позволяет сделать четкий вывод о роли пластохинона А как переносчика между фотосистемами I и II. [c.30]

    Таким образом, в слоевых системах тилакоидов имеются сложные пигментно-липидно-белковые комплексы с различными рассмотренными выше простетическимн группами только оптимальная пространственная организация этих комплексов делает возможным столь быстрый и эффективный транспорт электронов по цепи переносчиков, который наблюдается в фотосинтезе. Однако та же пространственная организация, вероятно, предопределяет и участие тех или иных компонент в нескольких редокс-системах, и возникновение новых, многокомпонентных редокс-систем, которое стимулируется условиями внешней среды живого организма, в частности действием мутагенов, ингибиторов и других агентов. Например, пластохинон А — первый акцептор электрона от Хл реакционных центров фотосистемы П — является еще и кофактором циклического переноса электрона с участием только системы I. Имеются данные о том, что цитохром / — важное звено в цепи транспорта электрона от фотосистемы И к фотосистеме I — принимает участие и в циклическом транспорте электрона. [c.33]

    Приведенный на рис.42 путь транспорта электрона при фотосинтезе называется нециклическим в отличие от индуцированного светом другого пути - циклического, обозначенного на рисунке пунктирной линией. В циклическом пути электрон, удаленный из фотовозбувденной молекулы хлорофилла, возвращается к ней по "замкнутой" системе, включащей ряд переносчиков и кофакторов, циклическим путем - отсвда и название этого пути переноса электрона. Молекула хлорофилла здесь является и донором и акцептором электрона. Этот путь транспорта электронов осуществляется при участии только фотосистемы I. [c.170]

    Для выяснения путей транспорта электронов в процессе фотосинтеза необходимо знать, какие вещества являются переносчика-вш электронов и какова последовательность их действия. Хотя полностью фотосинтетическая электронтранспортная цепь аце не установлена, тем не менее многие акцепторы и переносчики электронов, участвующие в ней, уже выделены из растений и свойства их изучены. К таким относятся хлорофиллы, цитохромы, ферродок-син, хиноны, флавиновые соединения, пластоцианин. О существовании же других компонентов цепи приходится пока судить по косвенным доказательстванг  [c.172]

    Изучение компонентов фотосинтетической цепи транспорта электронов так же, как и первичных продуктов фотохимической реакции, проводится с помощью обладающих высокой чувствительностью спектральных методов (абсорбционная дифференциальная спектрофотометрия, импульсная спектрофотометрия). Многие уча-ствуицие в процессе фотосинтеза переносчики электронов при окислении или восстановлении меняют спектр поглощения. Вышеуказанные методы позволяют определять вызванные светом небольшие обратимые изменения в поглощении света организмами in vivo которым можно судить о наличии, состоянии и характере индуцированных светом окислительно-восстановительных превращений данного соединения. Некоторые интермедиаты определяют по изменениям в спектре флуоресценции. [c.172]

    Так как донорами электрона в бактериальном фотосинтезе являются более сильные,, чем вода, восстановители, то они способны восстанавливать промежуточные кошоненты фотосинтетической цепи транспорта электронов без дополнительного притока энергии. Поэто-,му полагает, что в бактериальном фотосинтезе, в отличие от фотосинтеза зеленых растений, участвует только одна фотохимическая реакция, осуществляемая одной пигментной системоЧ. У пурпурных бактерия, у которнх установлено наличие двух фотореакций (стр. [c.200]

    Эффективность процесса фотосинтеза в г1елом, по вышеизложенной концепции, определяется эффективностью параллельно осуществляемых в хлоропластах фотореакций и обоих путей транспорта электрона, а не соотношением скоростей двух последовательных фото-реакций при нециклическом переносе электрона в фотосинтезе, как ато принято в настоящее время большинством исследователей и трактовалось в более ранних работах Арнона. Ослаблере интенсив- [c.214]

    На восстановление I молекулы СО в процессе фотосинтеза требуются две молекулы НАдФ Нз и 3 молекулы АТ (стр. 253 ) Если циклический путь транспорта электронов лимитирован, то недостает молекул АТФ, необходимых для восстановления фосфоглицериновой кислоты в фосфоглицериновыИ альдегид. Экспериментально показано, что ингибированиё циклического пути переноса электрона в изолированных хлоропластах приводит к повышению в них содержания фосфоглицериновой кислоты при одновременном снижении содержания [c.220]

    При фотосинтезе, как и при дыхании растений, имеет место ряд биохимических превращений, которые могут нарушаться при воздействии дипиридилиевых гербицидов. Основой фотосинтеза является система транспорта электронов. Исходным пунктом электронной цепи являются пигменты хлорофиллы а и 6, каротиноиды, а также сопровождающие пигменты, которые различны на различных стадиях развития растений. [c.57]

    Фотоионизация ароматических углеводородов и последующие реакции электронного переноса в биоагрегатах являются моделью процессов, возможно играющих основную роль в фотосинтезе и электронном транспорте в мембранах. Было показано [27, 281, что некоторые попициклические углеводороды, например пирен, эффективно фо той они зуются в водных мицеллярных растворах по одно- или дву -квантовым механизмам. Исследования, проведенные методом импульсного радиолиза [29, 30], показали, что заряд поверхности мицелп оказывает отчетливое каталитическое (или ингибирующее) влияние на реакции гидратированных эпектронов (.Представляло интерес [c.323]


Библиография для Фотосинтез транспорт электронов: [c.585]   
Смотреть страницы где упоминается термин Фотосинтез транспорт электронов: [c.333]    [c.342]    [c.351]    [c.353]    [c.237]    [c.380]    [c.202]    [c.45]    [c.104]    [c.117]    [c.168]    [c.204]    [c.209]    [c.212]    [c.216]    [c.218]    [c.223]    [c.116]    [c.116]    [c.71]   
Фотосинтез (1983) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Фотосинтез

Электроны при фотосинтезе



© 2024 chem21.info Реклама на сайте