Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мембраны модели структуры

Рис. 22.1. Жидкостно-мозаичная модель структуры мембраны Рис. 22.1. <a href="/info/1350589">Жидкостно-мозаичная модель структуры</a> мембраны

Рис. 1.6. Модель структуры плазматической мембраны Рис. 1.6. <a href="/info/33591">Модель структуры</a> плазматической мембраны
Рис. 2.20. Модель структуры плазматической мембраны. В двойной слой липидов погружены интегральные белки. Периферические белки только примыкают к поверхности мембраны. Рис. 2.20. <a href="/info/33591">Модель структуры</a> <a href="/info/101065">плазматической мембраны</a>. В <a href="/info/2476">двойной слой</a> липидов погружены <a href="/info/99869">интегральные белки</a>. <a href="/info/101064">Периферические белки</a> только примыкают к поверхности мембраны.
    Разрешение 20 А не является предельным для электронно-микроскопических методов. Рекордное по разрешению исследование было выполнено для бактериородопсина. Высокая упорядоченность кристаллов и уникальная радиационная стабильность позволили получить модель пространственной структуры белка с разрешением 7 А. Это дало возможность не только выявить внешнюю форму молекулы, но и описать ее внутреннюю структуру, а использование низкотемпературных микроскопов — собрать набор экспериментальных данных до разрешения 3 А в плоскости мембраны и, в конечном итоге, рассчитать атомную модель структуры белка. [c.215]

    Б. И. Курганов и соавт. (1986, 1988) выдвинули гипотетическую модель структур комплекса гликолитических ферментов в скелетных мышцах, а также на внутренней поверхности мембраны эритроцитов. Возможность объединения гликолитических ферментов в комплекс предопределена тем, что их молекулы имеют центры узнавания своих соседей , а однозначность сборки достигается тем, что в ней принимает участие якорный белок подложки, на [c.84]

    В последние годы весьма перспективной считается жидкостно-мозаичная модель структуры биологических мембран, предложенная в 1966 г. Д. Ленардом и С. Сингером, первоначальный вид которой представлен на рис. 1. Основу мембраны, согласно жидкостно-мозаичной модели, составляет двойной липидный слой. Большая часть мембранных белков имеет амфипатическую природу и образует глобулы, в которые могут включаться олигосахариды или специфические липиды с образованием гликопротеидов. Глобулы погружены в бимолекулярный липидный слой, причем некоторые из белков (интегральные) пронизывают пространство мембраны насквозь. Если представить, что мы смотрим на поверхность такой мембраны, то чередующиеся участки белков и липидов как бы создают мозаичную картину. Большая часть фосфолипидов представляет собой прерывистый двойной слой, полярные группы которого находятся в контакте с водой небольшая же их часть может жестко связываться с интегральными белками. Впо- лне возможно, что изменение фазового состояния липидного бислоя может вследствие, например, температурного фактора передаваться на интегральные белки и изменять их форму. [c.37]


    Тем не менее в настоящее время наиболее удовлетворительно объясняющей современные экспериментальные данные и перспективной является жидкостно-мозаичная модель структуры мембраны с учетом ее непосредственной связи с внутриклеточными структурами. [c.38]

    Массообмен в напорном и дренажном каналах определяется конвекцией и диффузией. Структура потоков в этих каналах может приближаться к предельным моделям идеального вытеснения или смешения чаще же она представляет более сложную модель, учитывающую влияние продольного и поперечного перемешивания. Массоперенос в мембране определяется типом мембраны (см. гл. 1) и может быть только диффузионным или же диффузионным и фазовым одновременно, как в пористых мембранах и пористой основе асимметричных мембран. [c.157]

    Мембрана находится в динамическом, лабильном состоянии, химические реакции и приток энергии исключают для нее равновесное состояние. Это обстоятельство делает маловероятной простую бислойную модель, по-существу статичную , говорит в пользу мозаичной модели. Вместе с тем очевидно, что необходимый уровень неравновесности у этой модели достигается относительно небольшими структурными нарушениями в бислойной модели без коренной ломки структуры. [c.387]

    Такие изменения, известные давно на основании общих соображений и качественных экспериментов, весьма существенны для разработки учения о граничных слоях с измененной структурой вблизи твердой поверхности. Это учение, развиваемое в трудах Дерягина и его школы, а также других ученых, на основе строгой теории и количественных экспериментов приобрело в настоящее время огромное значение для рещения многих вопросов устойчивости дисперсных систем, течения жидкостей через пористые тела и мембраны и др. Конечно, вряд ли можно отождествлять эти пленки с граничными слоями, переходящими в объемную фазу воды и Не имеющими границ раздела с паром , но изучение их свойств важно в качестве моделей, поскольку основную роль в образовании особой структуры играет, по-видимому, твердая подложка. Причиной этих особенностей структуры следует считать вандерваальсовы силы, электростатические силы и силы водородной связи между молекулами жидкости и поверхностными атомами и молекулами твердой фазы. [c.104]

    Антибиотики широко используют в качестве молекулярных инструментов при исследовании фундаментальных проблем биологии, таких, как расшифровка тончайших механизмов биосинтеза белка, нуклеиновых кислот и структуры клеточных стенок бактерий, создание моделей транспорта ионов через биологические мембраны и др. [c.64]

    Интерес к макроциклическим соединениям возник тогда, когда было обнаружено, что они подобны по своей структуре и свойствам природным биологически активным молекулам, таким как антибиотики, энзимы, рецепторы лекарственных препаратов, и способны к селективному комплексообразованию с ионами металлов и с различными низкомолекулярными соединениями [13-15]. Благодаря этому свойству они нашли широкое применение в качестве моделей ферментов при изучении рецептор-субстратного комплексообразования. Макроциклические лиганды играют значительную роль в таких биологических процессах, как иммунный ответ и транспорт через мембраны. Поэтому важность изучения их способности к узнаванию модельных биомолекул очевидна. Для обсуждения нами выбраны лиганды, имеющие диаметрально противоположные гидратационные свойства своих полостей. Это сделано с целью описать влияние сольватирующих свойств растворителя на термодинамику взаимодействия выбранных биомолекул, а также роль энтальпийно и энтропийно стабилизирующих вкладов на процесс комплексообразования. [c.189]

    Обратноосмотические мембраны отличаются от других типов мембран (ионно-обменных, непористых, ультрафильтрационных) невысокой плотностью поверхностного заряда, малыми размерами пор (г 20 30 А) и отрицательной адсорбцией растворенного вещества, связанной с дальнодействием поверхностных сил. Поэтому в первом приближении можно использовать для расчетов модель незаряженных пор. Ввиду малости размеров пор и неопределенности их геометрии целесообразным упрощением является введение средних скоростей течения жидкости в порах и//и (где т — пористость мембраны), средних коэффициентов диффузии растворенного вещества в поровом пространстве а, также осредненных по сечению пор значений концентрации С и потенциала взаимодействия молекул с поверхностью пор Ф = i//k7. Расчет осредненных значений и Ф применительно к различным моделям пористой структуры (цилиндрические и щелевые поры) сделан в работах [28—30]. [c.300]

    Учитывая, что предложенная модель мембраны (см. 3.1) предполагает, что липиды организованы в текучие двухслойные образования (или ламеллы), термодинамические свойства этих структур вызывают интерес. [c.309]

    На рис. 1 показана обобщенная модель структуры клеточной мембраны. Фосфолипиды образуют двойной слой с обращенными наружу гидрофильными концами. Парафиновые цепи расположены совершенно неупорядоченно ( -тип структуры, согласно классификации Луззати [ 17]). Молекулы холестерина распределены ло [c.282]


    В заключение мы хотим предложить возможную модель структуры мембраны нафион, которая согласуется со всеми изложенными выше данными. Прежде всего следует отметить, что заметные расхождения в макроструктуре мембран кислой и солевой форм отсутствуют. Действительно, эксперименты по рентгеновскому и нейтронному рассеянию показали одинаковую неоднородность. Характер кривых рассеяния также аналогичен для кислых и основных образцов. Можно отметить лишь небольшое изменение размеров ионных кластеров для ионов раз- [c.467]

    Еще в 1952 году было отмечено [282], что поверхность дисков, полученных из разрушенных хлоропластов, имеет гранулярную структуру. Гранулы казались слишком большими для того, чтобы их можно было счесть просто частицами металла, использованного для напыления (фото 1,8). Было высказано предположение, что эти гранулы представляют собой макромолекулы (диаметром около 7 нм), из которых состоят ламеллы, образующие диск [109]. На тонких срезах ламелл эти гранулы обнаружены не были. Парк и Пон [252, 253] выделили из разрушенных хлоропластов шпината фрагменты ламелл, способные осуществлять реакцию Хилла более эффективно, чем целые хлоропласты. Возможно, это следует объяснить отсутствием барьера проницаемости, который создает окружающая хлоропласт мембрана (фото X). На лиофилизированных и напыленных металлом препаратах хлоропластов можно видеть, что ламеллярные структуры, суммарная толщина которых равна 16 нм, состоят из двух слоев, причем максимальная толщина каждого слоя достигает 10 нм. Внутренняя поверхность этих двух слоев представляется более гранулярной, чем внешняя по-видимому, гранулы упакованы таким образом, что общая толщина уменьшается. Модель структуры хлоропласта, предложенная Парком и Поном [252], показана на фиг. 4. Позже исследователи пришли к выводу, что гранулы представляют собой сплющенные сфероиды [c.16]

    Облегченная диффузия осуществляется без затрат энергии за счет переноса вещества через мембрану в направлении градиента концентраций с помощью специальных белков-переносчиков. К ним относятся ферменты — транслоказы и пермиазы, которые своим активным центром связывают вещество с одной стороны мембраны и переносят его на другую поверхность мембраны. В этом случае возможен также вариант диффузии, при которой после присоединения транспортируемого вещества меняется конформация белка-переносчика, вследствие чего в мембране открывается специальный канал, по которому вещество и проникает внутрь клетки. Таким образом, транспортные белки делятся на белки-переносчики и каналообразующие белки. Первые взаимодействуют с молекулой переносимого вещества и каким-либо способом перемещают ее сквозь мембрану. Каналообразующие белки (порины), напротив, формируют в мембране водные поры, через которые (когда они открыты) могут проходить вещества (обычно неорганические ионы подходящего размера и заряда). Модель структуры бактериального порина схематически показана [c.444]

    В основе молекулярной организации мембран лежит способность липидов образовывать прочные мономолекулярные слои. Почти 50 лет назад было высказано предположение, что в основе мембран лежит бимолекулярный слой липидов. С тех пор было предложено множество различных моделей структуры мембраны, что отражено на рис. 9. Все предложенные модели ос-тавлязот неоспоримой белково-липидную природу мембран. Несмотря на большое число вариантов, представленные модели могут быть сведены к трем основным типам. [c.77]

Рис. 9. Различные модели структуры мембраны (Р1пеап, 1972). (Пояснения к рисунку в тексте.) Рис. 9. Различные модели структуры мембраны (Р1пеап, 1972). (Пояснения к рисунку в тексте.)
    Модели структуры мембран. Первая модель структуры мембран Даниэлли — Давсона (см. рис. 1) не объясняла проницаемости биологических мембран. Для устранения этого недостатка модель была модифицирована на основании предположения о существовании в структуре мембраны [c.35]

    Основные требования к структуре и материалу мембраны, вытекающие из капиллярпо-фильтрациопной модели механизма полупропицне-мости, можно сформулировать следующим образом  [c.211]

    В 1971 г. Ф. Сенгер и Г. Николсон предложили жидкостно-мозаичную модель биомембран, согласно которой мембраны представляют собой жидкокристаллические структуры, в которых белки могут быть не только на поверхности мембран, но и пронизывать их насквозь. В этом случае основой мембраны является липидный бислой, в котором углеводородные цепи фосфолипидов находятся в жидкокристаллическом состоянии, и с этим бислоем связаны белки двух типов периферические и интегральнь1е. Первые - гидрофильные, связаны с мембранами водородными и ионными связями и могут быть легко отделены от липидов при промывании буфером, солевым раствором или при центрифугировании. Вторые белки - гидрофобные, находятся внутри мембраны и могут быть выделены только после разрушения липидного слоя детергентом (процесс солюбилизации мембран), например, додецилсульфатом натрия, ЭДТА, тритоном и др. Интегральные белки, как правило, амфипатические, т.е. своей гидрофобной частью они взаимодействуют с жирными кислотами, а гидрофильной частью - с клеточным содержимым. Интегральные белки часто являются гликопротеидами, которые синтезируются в аппарате Гольджи, глико-зилируются в мембране и содержат много гидрофобных АК и до 50% спиральных участков. Эти белки перемещаются внутри липидного бислоя со скоростью, сравнимой с перемещением в среде, имеющей вязкость жидкого масла ( море липидов с плавающими айсбергами белков ). [c.107]

    Наружные сегменты палочек сетчатки позвоночных интенсивно иследовались с помощью дифракции рентгеновских лучей, электронной микроскопии и других современных методов. В результате было показано, что они содержат стопки мембранных дисков (рис. 9.7). Эти диски представляют собой структуры, состоящие пз двух слоев глобулярного белка (в основном это зрительный пигмент родопсин) и слоя липидов (главным образом фосфолипидов) между нимн. Родопсин составляет большую долю ( 85%) мембранного белка. Молекулы зрительного пигмента ориентированы в рецепторной мембране таким образом, что поглощение света, проходящего вдоль оси палочки, максимально. Была предложена модель, согласно которой молекулы зрительного пигмента могут латерально перемещаться в мембране и вращаться вокруг оси, перпендикулярной поверхности мембраны, причем любые другие перемещения исключены. По- [c.302]

    Несмотря на большие трудности, современная биофизика достигла крупных успехов в объяснении ряда биологических явлений. Мы узнали многое о строении и свойствах биологически функциональных молекул, о свойствах и механизмах действия клеточных структур, таких, как мембраны, биоэнергетические органоиды, механохимические системы. Успешно разрабатываются физико-математические модели биологических процессов, вплоть до онтогенеза и филогенеза. Реализованы общетеоретические подходы к явлениям жизни, основанные на термодинамике, теории информации, теории автоматического регулирования. Все эти вопросы будут с той или иной степенью детализации рассмотрены в книге. При этом, в соответствии с пониманием биофизики как физики явлении жизни, мы будем исходить из физических закономерностей, а не из физиологической классификации. Так, например, рецепция внешних воздействий органами чувств рассматривается в различных разделах книги — зрение в главе, посвященной фотобиологическим явлениям, слух и осязание в связи с механохпмическими процессами, обоняние — в связи с физикой молекулярного узнавания. [c.10]

    Наиболее важные вопросы, которые химическая технология должна поставить перед "наукой о живом", - выяснение механизмов природных процессов и последующее искусственное воспроизведение этих механизмов. К ним относится, например, разработка катализатора, действующего подобно ферменту, или создание искусственной мембраны, которая ведет себя как природная мембрана. В реакциях с участием ферментов избирательно образуются только желаемые продукты с удивительно высокой скоростью реакции, в очень мягких условиях, таких, как обычная температура, атмосферное давление, водная среда и почти нейтральное значение pH. По мере того как постепенно выяснялись механизмы реакций и структура ферментов, исследования на моделях ферментов, проведенные в последнее время, создали представления, позволяющие понять действие самих ферментов. Известно множество фактов, которые наводят на мысль о сходстве между краун-соединениями и веществами природного происхождения например, поведение циклоамилозы напоминает поведение гидролазы [ 49, 501, а каталитическая активность производных порфирина обусловливается связыванием ионов металла. [c.27]

    Колбочки, являющиеся рецепторами цветового зрения, устроены значительно сложнее, чем палочки, но механизм их действия в принципе такой же. Мы уже упоминали, что колбочки и палочки содержат одинаковый хромофор. Различия в спектрах поглощения (рис. 1.3) обусловлены строением опсинов, с которыми связан ретиналь. О структуре этих белков в колбочках известно еще меньше, чем об опсине палочек. Предполагается, что они закодированы в различных генах и могут, следовательно, иметь различные аминокислотные последовательности. Это подтверждается тем фактом, что цветовая слепота (дальтонизм) имеет рецессивный наследственный характер и связана с полом. Около 1% мужчин не различают красный цвет и 2% —зеленый, тогда как у женщин дальтонизм встречается значительно реже. Все три типа колбочек имеют и морфологические отличия от палочек. Помимо того что колбочки конические по форме, они отличаются от палочек и по структуре своих дисковых мембран, которые у них представляют собой не отдельные органеллы, а просто впячивания плазматической мембраны, т. е. плазматические и дисковые мембраны образуют континуум. Эти отличия колбочек учтены в модели фоторецепции Хагинса (рис. 1.7а, справа) связь между поглощением света и закрыванием натриевых каналов здесь опять-таки осуществляет кальций, который [c.19]

    Рассмотрим некоторые аспекты общей мембранологии , имеющие существенное значение для нейрохимии. Любая удовлетворительная мембранная модель должна ответить на следующие основные вопросы, касающиеся взаимосвязи структуры к функции мембраны  [c.65]

    Хотя бислойная модель предполагает симметричную структуру, при которой поверхность раздела монослоев является плоскостью симметрии, теперь мы знаем, что эта концепция ошибочна. Белки, углеводы и липиды в бислое распределены асимметрично. Эти данные, как и многие другие основополагающие концепции мембранологии, были получены при изучении мембран эритроцитов [12]. Есть многочисленные свидетельства того, что и нервная мембрана устроена аналогичным образом. [c.75]

    Значительная часть информации об общей структуре биомембран, которой мы сейчас располагаем, получена в ходе нзуче-пня специализированной мембраны нервной системы—миели-па. Благодаря своей относительно простой структуре миелин 1спользовался для разработки экспериментальных методов исследования мембран и построения их теоретических моделей. Миелин представляет собой многослойную систему, которая служит своеобразной изоляцией центральных и периферических нервных волокон. Белое вещество мозга у высших организмов более чем на 50% состоит из миелина, поэтому нарушения в образовании миелина при онтогенезе или изменения в структуре миелина в развитой нервной системе приводят к тяжелой невропатии. Следовательно, исследование структуры, функции и образования миелина представляется весьма важным для мембранологии и неврологии. [c.91]


Смотреть страницы где упоминается термин Мембраны модели структуры: [c.104]    [c.105]    [c.120]    [c.108]    [c.201]    [c.371]    [c.372]    [c.374]    [c.19]    [c.187]    [c.256]    [c.387]    [c.350]    [c.354]    [c.340]    [c.335]    [c.11]    [c.78]    [c.95]   
Физиология растений (1980) -- [ c.19 , c.20 ]




ПОИСК







© 2025 chem21.info Реклама на сайте