Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

МЭА-очистки Сульфинол

    В процессе эксплуатации установок очистки Сульфинол возникли также некоторые трудности [201]. Так, при сбросе давления в линии насыщенного раствора после абсорбера начинается быстрая десорбция газа. В результате движения двухфазного потока происходит вибрация трубопроводов, которая может привести к их разрушению (если не предусмотрены специальные меры) [186]. Кроме того, возможно вспенивание раствора, для предупреждения которого необходима добавка антивспенивателя. Недостатком [c.245]


    ОЧИСТКА ГАЗА В СУЛЬФИНОЛ-ПРОЦЕССЕ [c.278]

    Сульфинол-процесс имеет следующие преимущества по сравнению с аминовой очисткой  [c.279]

    Несмотря на то, что сульфинол-процесс применяется для очистки газов сравнительно недавно, ясно, что он имеет определенные преимущества. Аминовые установки очистки легко можно перевести на работу с сульфоланом. Скорость циркуляции раствора в этом процессе рекомендуется поддерживать такой, чтобы насыщенный раствор на выходе из абсорбера содержал не более 45 см кислых газов на 1 л раствора. [c.279]

    Сульфинол обладает значительно большей поглотительной способностью, чем МЭА. При давлении 0,25 МПа поглотительная способность Сульфинола в 1,5 раза больше, а при давлении выше 1,27 МПа - в два раза и более. Поэтому важным преимуществом Сульфинола является возможность одновременной тонкой очистки газа от НзЗ, СОз, С05, меркаптанов и сероуглерода. При этом степень извлечения меркаптанов составляет 95 %, а наиболее высокая степень извлечения кислых компонентов достигается при суммарном их парциальном давлении 0,7-0,8 МПа, когда степень насыщения Сульфинола приближается к 85 %. [c.54]

    Технологические параметры очистки газа по способу Сульфинол  [c.55]

Рис. 13. Принципиальная схема установки очистки газа Сульфинол Рис. 13. <a href="/info/844583">Принципиальная схема установки</a> <a href="/info/28275">очистки газа</a> Сульфинол
    Сульфолан применяют для очистки газов (сульфинол-процесс) в смеси с алканоламином (диизопропаноламином) и водой. Такая смесь растворителей обладает свойством извлекать из газов различного происхождения сероводород, двуокись углерода, сероуглерод, низкомолекулярные меркаптаны [50]. Сульфинол-процесс успешно применяют для очистки водорода. Капитальные затраты и эксплуатационные расходы на этот процесс очистки намного меньше, чем на карбонатный и на моноэтаноламин-ный [51]. В связи со сказанным сульфолан начинают все шире использовать в качестве селективного растворителя. [c.60]

Таблица 111.4. Эффективность очистки природных газов различного состава с помощью растворителя сульфинол (давление в абсорбере 7 МПа, температура 43 °С) 167] Таблица 111.4. Эффективность <a href="/info/146653">очистки природных газов</a> различного состава с <a href="/info/397212">помощью растворителя</a> сульфинол (давление в абсорбере 7 МПа, температура 43 °С) 167]

    Процесс разработан фирмой Шелл (США). Первая промышленная установка введена в действие в США в 1964 г. для очистки природного газа от сероводорода и Oj. Сульфинол-процесс может быть использован для комплексной очистки сухих газов от сероводорода, СОа, RSH, OS, Sj и при различной их концентрации в исходном сырье (табл. III.4). [c.155]

    Из этих данных следует в частности, что даже при небольшом содержании в газе H2S и СО2 более выгодно использовать процесс Сульфинол. Для реализации этого процесса требуются меньшие эксплуатационные и капитальные затраты (общий расход пара снижается по сравнению с МЭА-очисткой в 2 раза, капитальные вложения — в 1,3 раза). Практика показывает, что оборудование и установки, предназначенные для МЭА-очистки, можно легко приспособить для проведения процесса Сульфинол. При этом производительность установок может быть значительно увеличена. Технологические схемы и режимы процессов Сульфинол и МЭА-очистки не различаются между собой. В процессе Сульфинол давление в абсорбере определяется, как правило, давлением поступающего газа — чем выше давление, тем эффективнее протекает процесс очистки особенно большой эффект от повышения [c.156]

    Очистка газов процессом Сульфинол % [c.3]

    Капитальные затраты в процессе Сульфинол на 30% ниже, чем при очистке газа раствором МЭА [21]. В табл. 3.9 сравниваются пять установок очистки газа процессом Сульфинол прн [c.92]

    При очистке газа процессом Сульфинол насыщенность абсорбента углеводородами выше, чем аминовых растворов. Следовательно, возможен повышенный выход газов дегазации. Концентрация НгЗ в газах дегазации также выше, чем в аналогичных условиях на аминовых установках. Поэтому рекомендуется газы дегазации подвергнуть очистке в отдельной колонне (рис. 3.6) или же компрессором подавать в основной абсорбер. Чаще всего абсорбер низкого давления устанавливают над дегазатором, который является общим для обоих абсорбентов. [c.93]

Рис. 3.7. Принципиальная технологическая схема комбинированного варианта очистка газа процессом Сульфинол Рис. 3.7. <a href="/info/1480765">Принципиальная технологическая схема</a> <a href="/info/1531577">комбинированного варианта</a> <a href="/info/28419">очистка газа процессом</a> Сульфинол
    Комбинированный способ очистки газа Сульфинол — Скот позволяет снизить капиталовложения и эксплуатационные расходы (табл. 3.10). [c.94]

    На заводе для очистки хвостовых газов установки Клауса применен процесс Скот. В каскадном варианте как для очистки основного газа, так и для очистки хвостовых газов используется сульфинол. При этом поглотитель сначала подается в колонну, работающую в блоке Скот. Вследствие низкого давления (примерно атмосферное) не происходит полного насыщения раствора. [c.94]

    При проектировании установок очистки газа процессом Сульфинол необходимо принимать вб внимание следующее  [c.95]

Таблица IV-27. Показатели работы абсорбера при МЭА-очистке и в процессе Сульфинол Таблица IV-27. <a href="/info/1006448">Показатели работы абсорбера</a> при МЭА-очистке и в процессе Сульфинол
    Сульфинол -процесс обеспечивает глубокое извлечение H2S, СО2, OS, S2, RSH, RSR. Основное количество компонентов поглощается физическим растворителем, тонкая очистка осуществляется диизопропаноламином. Раствор сульфииол химически и термически стабилен, имеет низкую теплоемкость и давление насыщенных паров. При взаимодействии с СО2 сульфи-нол незначительно деградирует с образованием диизопропанол-оксозолидона, который имеет щелочную реакцию и хорошо растворяет кислые газы. Разложение сульфинола при наличии СО2 в очищаемом газе в 4—6 раз меньше, чем моноэтанолами-иа. Поглощающая способность сульфинола примерно в 2 раза выше, чем МЭА, что снижает удельное количество циркулирующего абсорбента. Сульфинол -процесс высокоэкономичен как при низких, так и при высоких парциальных давлениях кислых газов в исходном газе. Расход пара на регенерацию абсорбента [c.183]

    Технологическая схема сульфинол-процесса ничем, кроме реагента, не отличается от схемы аминовой очистки. Этот процесс разработан фирмой 8Ье1Ь. [c.278]

    В процессах физико-химической абсорбции используют комбинированные абсорбенты - смесь физического абсорбента с химическим. Для этих абсорбентов характерны промежуточные значения растворимости кислых компонентов газа. Эти абсорбенты позволяют достигать тонкой очистки газа не только от сероводорода и диоксида углерода, но и от сераорганических соединений. Наибольшее промышленное применение нашел абсорбент Сульфинол , представляющий собой смесь диизопропаноламина (30-45 %), сульфолана (диоксида тетра-гидротиофена 40-60 %) и воды (5-15 %). Б последние годы широко стал внедряться в промышленные процессы абсорбент Укарсол , разработанный фирмой Юнион карбайд (США) [c.14]


    В табл. 4 приведены технологические параметры очистки природного газа Сульфинолом при давлении 7 МПа и температуре 43 °С [7], откуда видно, что способ обеспечивает тонкую очистку газа при относительно небольших расходах абсорбента. По данным [29], замена МЭА-очистки газа способом Сульфинол" приводит к увеличению производительности установки по сырью в 1,5 раза. Регенерацию ведут при 65 °С, поэтому расход пара в 2-2,5 раза меньше, чем по МЭА-способу. Реакция ДИПА с Oj здесь значительно замедлена и потери абсорбента в четыре раза меньше, чем по МЭА-способу. [c.55]

    МПа поступает во входной сепаратор С-1 для отделения капельной жидкости сконденсировавшейся влаги и тяжелых углеводородов. Газ из сепаратора подается на очистку в абсорбционную колонну К-1, на верх которой подается регенерированный абсорбент Сульфинол . Очищенный газ из К-1 поступает в сепаратор С-2 для отделения унесенного абсорбента, который объединяется с потоком регенерированного абсорбента и возвращается в К-1. Насыщенный абсорбент с низа К-1 направляется в экспанзер, где за счет понижения давления происходит выделение растворенных углеводородов. Количество газов дегазации в этом процессе ввиду повышенной растворимости углеводородов в физическом абсорбенте значительно больше, чем в процессах аминовой очистки, причем и содержание HjS в них выше. Поэтому целесообразно осуществлять очистку экспанзерного газа в отдельной колонне. В приведенном варианте схемы абсорбер К-2 для очистки экспанзерного газа (низкого давления) выполнен в одном корпусе с дегазатором В-1. Часть регенерированного абсорбента подается на верхнюю тарелку К-2. В других вариантах схемы экспанзерный газ может возвращаться в поток сырьевого газа после компримирования его до первоначального давления. Частично дегазированный абсорбент после В-1 подогревается в теплообменнике Т-1 обратным потоком регенерированного Сульфинола и поступает на регенерацию в К-3. Кислый газ с верха К-2 проходит через холодильник Х-2 для конденсации иаров унесенного абсорбента и поступает в емкость орошения. Кислые газы направляются на установки получения серы, а Сульфинол поступает на верхнюю тарелку К-3 в качестве орошения. Для поддержания температуры десорбции (65 °С) часть абсорбента подогревается в испарителе И-1. Регенерированный Сульфинол с низа К-3 насосом Н-3 подается после охлаждения в рекуперативном теплообменнике Т-1 и водяном холодильнике Х-1 в абсорбционные колонны К-1 и К-2. [c.57]

    Другое решение проблемы демеркаптанизирующего растворения — применение дигликольамина, который наряду с извлечением H2S и СО2 обеспечивает экстракцию дисульфида углерода ( S2) и карбонилсульфида. Отметим, что имеется разновидность этого процесса, так называемый сульфинол-процесс , который применяется в основном для очистки природного газа. Однако он вполне пригоден для обработки СНГ с целью извлечения всех упомянутых серосодержащих газов и СО2. Сульфинол — это смесь тетрагидротиофена-1, 1-диоксида, который выполняет функции растворителя, и диизопропаноламина, который действует как химический агент. [c.23]

    Промышленный генератор СО2 позволяет получать при сжигании чистых (неодоризованных) СНГ чистый углекислый газ исключительно простым способом. При окислении СНГ при избыточном количестве воздуха образуется смесь СО2, паров воды и азота, которая может сразу же компримироваться и вдуваться непосредственно в напиток, так как пары воды конденсируются, а азот, обладающий меньщей, чем СО2, растворимостью, пройдет через жидкость, не абсорбируясь. При другом способе получения СО2 накапливается за счет абсорбции в одном из многочисленных селективных растворителей (моноэтаноламин, модифицированный карбонат калия, некоторые аминоспирты, сульфинол и т. п.), а затем регенерируется в виде концентрированного газа из растворителя. Дальнейшая очистка осуществляется при глубоком охлаждении (СО2 затвердевает при —78,5 °С, при этом отделяется большая часть газообразных примесей, имеющих более низкую точку кипения). Твердая двуокись углерода (сухой лед) используется для газирования напитков, в частности в тех случаях, когда масштабы розлива по бутылкам невелики, а организация местного производства СО2 неэкономична. [c.272]

    Сульфинол хорошо растворяет HjS, Og, RSH, OS, Sg и углеводороды он химически и термически стабилен, имеет низкую теплоемкость и давление насыщенных паров, может быть использован для комплексной очистки сухих газов от нежелательных серо- и кислородсодержащих соединений, позволяет производить тонкую очистку газов от меркаптанов и от сероуглерода одновременно (степень извлечения меркаптанов 95%) при взаимодействии с СО2 сульфинол незначительно деградирует с -образованием диизопропанол-оксазолодона, который имеет щелочную реакцию и хорошо растворяет кислые газы (допустимое содержание его в абсорбенте 10%). Наличие в сыром газе СО2 не приводит к большим потерям сульфинола — на промышленных установках разложение сульфинола в 4—8 раз меньше, чем моноэтаноламина [28, 69]. Продукты разложения легко удаляются из системы в результате того, что до 0,05% регенерируемого раствора подвергается специальной очистке. Поглощающая способность сульфинола примерно в 2 раза выше, чем раствора моноэтаноламина [52]. [c.154]

    Из рис. П1.22 следует в частности, что при низких парциальных давлениях Oj и HgS в сыром газе (до 0,065 МПа) рекомендуется использовать алканоламиновые растворители или процесс Сульфинол. Начиная от 0,065 до 0,55 МПа для очистки газов целесообразно использовать также активированный горячий поташ, физические растворители и процесс Эконамин. При парциальном давлении HjS и Oj в сыром газе более 0,55 МПа рекомендуются процессы Эконамин и Селексол, а также процессы, в которых используются диэтаноламин и физические растворители. [c.159]

    Растворы диизопропаноламина (ДИПА, фирменное название процесса АДИП) начали применяться для очистки газа от кислых компонентов в конце 50-х годов. В настоящее время ДИПА используется как в водных растворах (до 40%), так и в смеси с сульфоланом (процесс Сульфинол ). [c.227]

    Как следует из таблицы, замена моноэтаноламиновой очистки способом Сульфинол позволяет увеличить почти в 1,5 раза нагрузку по газу. При этом для обеспечения нормальной работы регенератора его диаметр пришлось увеличить в 1,5 раза. Регенератор имел 18 клапанных тарелок, остальное оборудование — теплообменники, холодильники, хранилище, узел приготовления раствора— могут быть такими же, как и при моноэтаноламиновой очистке. По данным [188], регенерацию ведут нри 65 °С. Общий расход пара нри очистке методом Сульфинол снижается в 2—2,5 раза по сравнению с моноэтаноламиновой очисткой и на 10% по сравнению с очисткой горячими растворами поташа. Это объясняется уменьшением количества отдувочного нара и значительным снижением расхода нара на покрытие недорекуперации в теплообменниках, так [c.244]

    Смешанный растворитель в процессе Сульфинол растворяет компоненты очищаемого газа лучше, чем водный раствор МЭА, поэтому в зависимости от состава газа и требований к чистоте двуокиси углерода возможна промежуточная отдувка примесей из насыщенного раствора путем снижения давления в емкости, установленной между абсорбером и теплообменником. В остальном технологическая схема не отличается от схемы моноэтаноламиновой очистки. [c.245]

    Капитальные затраты в процессе Сульфинол на 30% ниже, чем при моноэтаноламиновой очистке, и на 10% меньше, чем при очистке горячим раствором поташа [190, 191]. Кроме того, при сульфинольной очистке коррозия снижается в несколько раз по сравнению с коррозией под действием раствора МЭА. [c.245]

    Многие из этих способов рассмотрены в главе IV. Так, хемосорб-ционные процессы типа моноэтаноламиновой и диэтаноламиновой очистки широко применяются для очистки газа от НаЗ и СОа- Комплексная очистка от НзЗ, СОа и органических сернистых соединений успешно осуществляется с помощью процессов физической абсорбции (способы Пуризол , Селексол , Ректизол ), а также совместно химическими и физическими абсорбентами (процессы Сульфинол , Амизол ). Эти процессы рассмотрены в главе IV. Обзор современных процессов очистки газа от сероводорода приведен в работах [1-6]. [c.331]

    Процесс Сульфинол позволяет удалять H2S, OS, RSH, S2, а также СО2 полностью или частично из природных и нефтезаводских газов. Примерный состав абсорбента 30 % диэтаноламина, 64 % сульфолана, 6 % воды. Можно применять моно- или диизопропаноламин. В составе смешанного растворителя амин выполняет роль хемосорбента, сульфолан и вода — физического сорбента. В процессе Сульфинол удаляют OS, S2 и меркаптаны. В условиях очистки растворитель химически и термически стабилен, в несколько раз менее коррозионно агрессивен, чем водный раствор моноэтаноламина. Регенерацию осуществляют при 65 °С. В принципе технологическая схема не отличается от схемы моноэтаноламиновой очистки. После очистки способом Сульфинол в газе содержится 0,0004 об. % общей серы и 0,005 об. % СО2. [c.16]

    В физических абсорбционных процессах в качестве абсорбентов применяют диметиловый эфир полиэтиленгликоля (селексол-про-цесс), Ы-метилпирролидон, пропиленкарбонат (флюор-процесс) три-бутилфосфат, ацетон, метанол и др. В качестве химических абсорбентов (хемосорбентов) широко используют амины, щелочь, аммиак, карбонат калия и др. Из комбинированных абсорбционных процессов, использующих в качестве поглотителя смесь физических и химических поглотителей, наиболее широкое практическое распространение получил процесс Сульфинол с использованием суль-фолана и диизопропаноламина. В отечественной газовой промышленности и нефтепереработке преобладающее применение получили процессы этаноламиновой очистки горючих газов. Из аминов преобладающее применение нашли в нашей стране моноэтанола-мин (МЭА), за рубежом - диэтаноламин (ДЭА). Среди аминов МЭА наиболее дешевый и имеет такие преимущества, как высокая реакционная способность, стабильность, высокая поглотительная емкость, легкость регенерации. Однако ДЭА превосходит МЭА по таким показателям, как избирательность, упругость паров, потери от уноса и химических необратимых взаимодействий, энергоемкость стадии регенерации и некоторым другим. [c.192]

    В конце 50-х годов фирма Шелл дивелопмент разработала процесс сульфинол очистки природных и нефтяных газов от сероводорода и двуокиси углерода. Новый процесс отличается применением смешанного поглотителя сульфинол, состоящего из алканоламина (в частности диизопропаноламина) и сульфолана (тетрагидротиофендиоксида) [c.383]

    Недавно в литературе появились сообщения [55, 56] о результатах эксплуатации первой промышленной установки очистки природного газа по процессу сульфинол (фирма Шелл ойл , близ Кернс-Сити, шт. Техас). Установка была построена в 1962 г. для очистки промыслового сепараторного газа (давленпе 66,5 А7 г, содержание НзЗ 1,6%, СОз 6,9%) водным моноэтаполами-ном. Проектная мощность (но газу) 620 тыс. ж в сутки (предусматривалось последующее расширение до 1,7 млн. в сутки). [c.383]


Смотреть страницы где упоминается термин МЭА-очистки Сульфинол: [c.158]    [c.702]    [c.57]    [c.58]    [c.156]    [c.840]    [c.91]    [c.95]    [c.95]    [c.245]   
Очистка технологических газов (1977) -- [ c.244 ]




ПОИСК







© 2024 chem21.info Реклама на сайте