Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Очистка газа физическими абсорбентами

    Абсорбционные методы очистки газов основаны на различной растворимости газов в жидкостях. Абсорбционные процессы можно классифицировать по различным признакам. В зависимости от физико-химической основы их можно разделить на процессы физической абсорбции и химической абсорбции (или хемосорбции, т. е. абсорбции, сопровождающейся химической реакцией газа с хемосорбентом). Это разделение в целом является условным. Процессы абсорбции, сопровождающиеся относительно сильным физическим взаимодействием молекул газа с молекулами абсорбента (например, с образованием водородной связи), близки к процессам абсорбции при слабой химической реакции. [c.25]


    Очистку газа методом физической абсорбции целесообразно осуществлять только при средних и высоких парциальных давлениях кислых компонентов газа. При низких парциальных давлениях степень извлечения кислых компонентов невелика. Растворимость извлекаемых компонентов в абсорбенте можно повысить в некоторой степени путем повышения давления в абсорбере, но при этом одновременно увеличивается растворимость углеводородных компонентов газа и, следовательно, селективность процесса будет оставаться низкой. Кислые газы, получаемые на стадии регенерации и используемые обычно для получения серы, содержат в этом случае большое количество углеводородов, что нежелательно для процесса Клауса. Повысить концентрацию кислых компонентов можно ступенчатой дегазацией насыщенного абсорбента с постепенным понижением давления, но в газах дегазации, как правило, помимо углеводородов присутствуют сероводород и диоксид углерода, и [c.42]

    Это один из вариантов очистки газов физической абсорбцией. В качестве абсорбента применяют диметиловых эфир полиэтилен-гликоля [199, 249—255], основные физико-химические свойства которого приведены ниже  [c.269]

    Количество растворяющегося компонента тем больше, чем выше его парциальное давление и коэффициент растворимости, увеличивающийся с понижением температуры. Перечень и характеристика наиболее распространенных абсорбентов, используемых в процессах очистки газов физической абсорбцией, был приведен в табл. 6.9. [c.297]

    ОЧИСТКА ГАЗА ФИЗИЧЕСКИМИ АБСОРБЕНТАМИ [c.336]

    Низкая теплоемкость физических абсорбентов в сочетании с низкой теплотой растворения кислых компонентов сокращает энергетические затраты на процесс очистки газа по сравнению с химическими абсорбентами. [c.58]

    ОЧИСТКА ГАЗА от кислых КОМПОНЕНТОВ ФИЗИЧЕСКИМИ АБСОРБЕНТАМИ [c.41]

    Недостаток физических абсорбентов - высокая растворимость углеводородов тяжелее этана. Поэтому физические абсорбенты применяются в основном для очистки газа в процессах получения водорода и окиси углерода для извлечения диоксида углерода из этих компонентов. В этих процессах нет тяжелых углеводородов, так как для конверсии применяется сухой газ. При очистке газа от кислых газов тяжелые углеводороды извлекаются вместе с сероводородом, что затрудняет производство серы из кислого газа, содержащего углеводороды. До настоящего времени на газоперерабатывающих заводах нет процессов очистки газа физическими абсорбентами. [c.205]


    Физические абсорбенты ио сравнению с хемосорбентами имеют сродство с углеводородными компонентами газа и хорошо растворяют их (особенно высшие и ароматические). Растворенные в абсорбенте углеводороды попадают в кислые газы, выделяемые ири регенерации абсорбента, и вместе с ними на установку получения серы, вызывая преждевременную дезактивацию катализатора и понижая качество получаемой серы. Поэтому на практике физические абсорбенты используют либо для очистки тощих газов, либо после предварительного удаления из газа углеводородов [c.252]

    Комбинированные абсорбенты представляют собой смесь физического и химического абсорбентов. Они лишены недостатков физических абсорбентов, позволяющих очищать только газы с высоким парциальным давлением кислых компонентов, и недостатков наиболее распространенных химических абсорбентов - аминов (извлекаются HjS и Oj и почти не извлекаются сераорганические соединения). Комбинированные абсорбенты обеспечивают глубокое извлечение HjS, Oj, OS, Sj, RSH и RSR. Основное количество кислых компонентов извлекается физическим абсорбентом, а тонкая очистка химическим абсорбентом. [c.53]

    Основными критериями при выборе абсорбентов, а следовательно, и процессов являются начальное и конечное содержание извлекаемых нежелательных компонентов в газе и заданное рабочее давление в системе или начальное и конечное парциальное давление их в условиях очистки. Начальное давление предопределяет кратность циркуляции абсорбента (удельный его расход). Конечное парциальное давление (или глубина очистки газа) зависит в первую очередь от степени регенерации абсорбента и от равновесного давления извлекаемого газа над раствором от температуры. Капитальные и эксплуатационные затраты определяются главным образом кратностью циркуляции и условиями регенерации растворителя. Следовательно, экономика процесса предопределяется в основном парциальными давлениями извлекаемых нежелательных компонентов в сыром и очищенном газе. На основе этих данных можно оценить, какой из растворителей — химический или физический — наиболее приемлем для заданных условий. После этого, учитывая специфику содержащихся в газе примесей и возможные варианты взаимодействия их с растворителями данной конкретной группы, можно выбрать процесс, который целесообразно будет использовать для проведения технико-экономического исследования. [c.141]

    Эта реакция является экзотермической и обратимой при повышенных температурах. Иногда получается, что в вышеуказанном диапазоне изменения концентрации сероводорода температура горения в реакционной печи становится слишком низкой, чтобы обеспечить протекание термических реакций образования серы, и побочные реакции, особенно с участием углеводородов, резко увеличивают образование побочных продуктов. Поэтому такая схема работает хорошо только при отсутствии углеводородов в кислом газе или при их наличии в незначительных количествах (до 2 %). Иногда (при использовании физических абсорбентов для очистки газа от кислых компонентов) считают допустимым содержание углеводородов в кислом газе до 5 %, хотя это, безусловно, вызывает дополнительные сложности в эксплуатации установок Клауса. [c.102]

    При высоком парциальном давлении нежелательных соединений для реализации процессов очистки газов органическими растворителями требуются, как правило, меньшие капитальные и эксплуатационные затраты, чем для реализации аминовых хемо-сорбционных процессов, так как поглотительная способность органических растворителей возрастает примерно пропорционально парциальному давлению кислых газов и других нежелательных соединений. Регенерация физических абсорбентов протекает во многих случаях без подвода тепла за счет снижения давления в системе. [c.139]

    Рассматривая технологические особенности процессов очистки газов, необходимо отметить, что выбор способа очистки сводится, как правило, к выбору абсорбента, который при соответствующем конструктивном и технологическом оформлении процесса обеспечивает производство товарного газа и сопутствующих продуктов (серы и др.) при высоких технико-экономических показателях. Ниже перечислены процессы очистки газов от сероводорода, СОз, RSH и других нежелательных соединений, основанных на химической и физической абсорбциях  [c.140]

    Ввиду относительно малой растворимости газов расход электроэнергии на циркуляции абсорбента при физической абсорбции сравнительно велик. Он снижается при проведении физической абсорбции при пониженных температурах. Характерным примером такого процесса является очистка газа от СО2 и других примесей холодным метанолом (см. гл. IV). [c.39]

    Анализ мировой практики, накопленный в области очистки газов, показывает, что основными процессами, применяемыми для обработки больших потоков газа, являются абсорбционные с исиользованием химических и физических абсорбентов и их комбинации. Окислительные и адсорбционные процессы применяют, как правило, для очистки небольших потоков газа, либо для тонкой очистки газа. [c.250]


    В связи с тем, что хемосорбенты образуют с кислыми компонентами химические соединения, парциальное давление их над регенерированным раствором значительно ниже, чем ири физической абсорбции. Поэтому ири использовании физических растворителей труднее достичь тонкой очистки газа, что требует усложнения технологической схемы установки сероочистки (двух-, трехступенчатая регенерация насыщенного абсорбента, увеличение числа тарелок в абсорбере, дополнительная доочистка химическим абсорбентом и др.). [c.252]

    В качестве физических абсорбентов для очистки газов применяются различные классы соединений алифатические спирты, эфиры гликолей, гетероциклические соединения и др. [27]. [c.336]

    Высокая растворимость углеводородов в физических абсорбентах (табл. 4.58) является одним из существенных факторов, затрудняющих исиользование физических абсорбентов для очистки от НзЗ и СО2 жирного углеводородного газа. [c.351]

    Процессы физической абсорбции заключаются в извлечении кислых компонентов из природного газа за счет селективного растворения отдельных компонентов органическими соединениями. Применение физических абсорбентов позволяет кроме сероводорода и диоксида углерода извлечь и сероорганические соединения. В ряде случаев физические абсорбенты извлекают из газа влагу, т.е. одновременно проходят очистка и осушка газа. [c.204]

    В современных схемах производства аммиака наиболее широко распространена очистка конвертированного газа от СО2 под давлением 2,8 МПа. Концентрация Oj в очищаемом газе обычно близка к 18%, т. е. парциальное давление СО2 составляет 0,5 МПа. В этих условиях более эффективны методы очистки, при которых абсорбент можно полностью (или частично) регенерировать путем снижения давления. К таким методам относятся процессы, основанные на физической абсорбции [5]. Однако с помощью физической абсорбции, как правило, нельзя достичь тонкой очистки (за исключением абсорбции при низких температурах), поэтому требуется доочистка [c.221]

    Одной из важнейших и первых стадий в производстве аммиака является очистка газов. Различают жидкостные (мокрые) и сухие способы промышленной очистки. Жидкостные способы осуществляют с помощью жидких поглотителей — абсорбентов эти способы основаны на физической абсорбции и абсорбции, сопровождаемой химическими реакциями. Сухие способы очистки основаны на поглощении веществ твердыми поглотителями. Сюда относятся способы, основанные на физической адсорбции и хемосорбции, на каталитическом превращении примесей в легко удаляемые или менее вредные соединения. В качестве адсорбентов применяют активированный уголь, смеси активной окиси железа и соды (железо-содовая масса) и др. [c.262]

    В основе процесса Сульфинол лежит смешение двух растворителей и создание нового поглотителя, обладающего положительными свойствами каждого из исходных компонентов. Выше указывалось, что при больших парциальных давлениях двуокиси углерода в очищаемом газе растворимость СО2 и Н25 в физических абсорбентах превышает емкость водных растворов аминов, для которых она практически ограничена стехиометрическим соотношением и условиями коррозии. Однако физические органические абсорбенты лишены важного преимущества аминов — возможности дешевой тонкой очистки от двуокиси углерода, что объясняется относительно слабой [c.205]

    На территории России значительная доля газоконденсатных месторождений содержит в составе пластовых газов сероводород и сероорганические соединения, без очистки от которых газ не может быть подан в систему магистральных газопроводов и потребителям. Организация добычи газа на Оренбургском, а затем на Астраханском месторождениях, потребовала использования технологий по очистке газа от сероводорода, производству газовой серы и доочистке хвостовых газов производства серы, а также очистке газа и конденсата от се-роорганпческпх соединений. В последние годы появилось множество новых технологических процессов переработки природных газов, в том числе очистка газа физическими абсорбентами, окислительными и микробиологическими методами, термическая и плазмохимическая диссоциация сероводорода, мембранные процессы газоразделепия и т.д. [c.7]

    Очистка газа методом низкотемпературной абсорбции метанолом основана на физической абсорбции метанолом примесей, содержащихся в газовых смесях. В промышленных условиях процесс очистки газов метанолом проводят под давлением 1,0—3,0 МПа в интервале температур от —45 до —60°С. При указанных условиях метанол является эффективным абсорбентом двуокиси углерода, сернистых соединений и органических веществ, содержащихся в азотоводородной смеси. [c.48]

    Данную схему используют также для очистки газов дегазации углеводородного конденсата. Извлечение кислых компонентов осуществляют подачей противотоком катализаторного комплекса насосами 5 и 6 в верхнюю часть абсорбера 1. Катализаторный комплекс представляет собой полифталоцианин кобальта, растворенный в смешенном абсорбенте, состоящем из диэтаноламина, диметилацетамина и воды. В случае применения смешанного абсорбента поглощение сероводорода и двуокиси углерода происходит главным образом за счет химического взаимодействия с диэтаноламином, тиолов - за счет их физического растворения. Условия абсорбции давление 5,8...6 МПа, температура 20...35°С. Насыщенный кислыми компонентами катализаторный комплекс из куба абсорбера поступает в экспанзер 2, где при снижении давления до 0,4 МПа удаляются физические растворенные углеводоро-дьк Дегазированный поглотитель насосом 3 направляют на окислительную регенерацию в реактор змеевикового типа 4. Регенерацию осуществляют кислородом воздуха, подаваемым в поток из расчета [c.145]

    В отличие от хемосорбциопных способов методом физической абсорбции можно наряду с сероводородом и диоксидом углерода извлекать серооксид углерода, сероуглерод, меркаптаны, а иногда и сочетать процесс очистки с осушкой газа. Поэтому в некоторых случаях (особенно при высоких парциальных давлениях кислых компонентов и когда не требуется тонкая очистка газа) экономичнее использовать физические абсорбенты, которые по сравнению с химическими отличаются существенно более низкими затратами на регенерацию. Ограниченное применение этих абсорбентов обусловлено повышенной растворимостью углеводородов в них, что снижает качество получаемого кислого газа, направляемого обычно на установки получения серы. [c.14]

    В процессах физико-химической абсорбции используют комбинированные абсорбенты - смесь физического абсорбента с химическим. Для этих абсорбентов характерны промежуточные значения растворимости кислых компонентов газа. Эти абсорбенты позволяют достигать тонкой очистки газа не только от сероводорода и диоксида углерода, но и от сераорганических соединений. Наибольшее промышленное применение нашел абсорбент Сульфинол , представляющий собой смесь диизопропаноламина (30-45 %), сульфолана (диоксида тетра-гидротиофена 40-60 %) и воды (5-15 %). Б последние годы широко стал внедряться в промышленные процессы абсорбент Укарсол , разработанный фирмой Юнион карбайд (США) [c.14]

    МПа поступает во входной сепаратор С-1 для отделения капельной жидкости сконденсировавшейся влаги и тяжелых углеводородов. Газ из сепаратора подается на очистку в абсорбционную колонну К-1, на верх которой подается регенерированный абсорбент Сульфинол . Очищенный газ из К-1 поступает в сепаратор С-2 для отделения унесенного абсорбента, который объединяется с потоком регенерированного абсорбента и возвращается в К-1. Насыщенный абсорбент с низа К-1 направляется в экспанзер, где за счет понижения давления происходит выделение растворенных углеводородов. Количество газов дегазации в этом процессе ввиду повышенной растворимости углеводородов в физическом абсорбенте значительно больше, чем в процессах аминовой очистки, причем и содержание HjS в них выше. Поэтому целесообразно осуществлять очистку экспанзерного газа в отдельной колонне. В приведенном варианте схемы абсорбер К-2 для очистки экспанзерного газа (низкого давления) выполнен в одном корпусе с дегазатором В-1. Часть регенерированного абсорбента подается на верхнюю тарелку К-2. В других вариантах схемы экспанзерный газ может возвращаться в поток сырьевого газа после компримирования его до первоначального давления. Частично дегазированный абсорбент после В-1 подогревается в теплообменнике Т-1 обратным потоком регенерированного Сульфинола и поступает на регенерацию в К-3. Кислый газ с верха К-2 проходит через холодильник Х-2 для конденсации иаров унесенного абсорбента и поступает в емкость орошения. Кислые газы направляются на установки получения серы, а Сульфинол поступает на верхнюю тарелку К-3 в качестве орошения. Для поддержания температуры десорбции (65 °С) часть абсорбента подогревается в испарителе И-1. Регенерированный Сульфинол с низа К-3 насосом Н-3 подается после охлаждения в рекуперативном теплообменнике Т-1 и водяном холодильнике Х-1 в абсорбционные колонны К-1 и К-2. [c.57]

    К недостаткам физических растворителей (в том числе и применяемого в абсорбенте Укарсол ) относится повышенная растворимость в них углеводородных компонентов газа, что может привести к ухудшению качества серы. Комплексные абсорбенты (каким является Укарсол ) на основе алканоламинов и органических растворителей позволяют эффективно использовать преимущества как хемосорбентов, так и физических растворителей и осуществить одновременную очистку газа от H2S, SOjH сераорганических соединений. [c.58]

    Процессы очистки газов от нежелательных соединений растворителями, представляющими собой смесь водного алкано-ламинового раствора с органическими растворителями — сульфо-ланом, метанолом и др. Они основаны на физической абсорбции нежелательных соединений органическими растворителями и химическом взаимодействии с алканоламинами, являющимися активной реакционной частью абсорбента. Эти процессы сочетают в себе многие достоинства химической и физической абсорбции. Их можно использовать для тонкой комплексной очистки газов от сероводорода, СОа, RSH, OS и Sj. [c.139]

    Очистка газа от СО2 в отсутствие НаЗ (см. рис. 111.20). Такой случай может быть при переработке природного и других газов. Из диаграммы следует в частности, что при низких парциальных давлениях диоксида углерода в сыром газе (до 0,07 МПа) целесообразно использовать алканоламиновые растворители при парциальных давлениях от 0,07 до 0,7 МПа — алканоламиновые абсорбенты, горячий поташ или физические растворители при парциальном давлении более 0,7 МПа — физические раствори- тели, комбинации их с аминами или горячим поташем, [c.157]

    Очистка газа от HjS в отсутствие в газе Oj (см. рис. 111.21). Такая проблема встречается при переработке природного, нефтяного и других газов. Из диаграммы следует в частности, что при низких парциальных давлениях сероводорода в сыром и очищенном газах рекомендуются процессы Стретфорд и Ветрококк — HjS при средних парциальных давлениях первое место начинают занимать алканоламиновые процессы при парциальных давлениях более 0,4 МПа рекомендуются в основном физические растворители или комбинации их с другими абсорбентами. [c.158]

    Большой интерес представляет сравнение процесса селексол с другими процессами очистки газа. В табл. 3.7 приводятся данные одного из вариантов. В качестве исходных данных, были взяты давление в абсорбере 7,1 МПа концентрация СОг в сырьевом газе 30% содержание НгЗ в газе до очистки 458 мг/м производительность установки 2,83 млн. м /сут.. Во всех вариантах предусматривалась тонкая очистка газа от-сероводорода. Худшие показатели имеет процесс очистки газа раствором МЭА, что связано с глубоким извлечением диоксида углерода из газа. Капиталовложения и эксплуатационные расходы на установках, использующих физические поглотители,, значительно ниже. Следует отметить, что этот процесс более пригоден для очистки тощего газа, поскольку абсорбент по-глощает пропан и более тяжелые углеводороды. При большем содержании пропана и более тяжелых углеводородов для очистки газа процессом Селексол следует исключать попадание углеводородов на установки Клауса. [c.90]

    Многие из этих способов рассмотрены в главе IV. Так, хемосорб-ционные процессы типа моноэтаноламиновой и диэтаноламиновой очистки широко применяются для очистки газа от НаЗ и СОа- Комплексная очистка от НзЗ, СОа и органических сернистых соединений успешно осуществляется с помощью процессов физической абсорбции (способы Пуризол , Селексол , Ректизол ), а также совместно химическими и физическими абсорбентами (процессы Сульфинол , Амизол ). Эти процессы рассмотрены в главе IV. Обзор современных процессов очистки газа от сероводорода приведен в работах [1-6]. [c.331]

    В отличие от этаиоламииов физические абсорбенты позволяют извлечь из газа одновременно с HjS и СО2 сероорганические иримеси - меркаптаны, сероокись углерода, сероуглерод, а в ряде случаев и осушить газ. Кроме того, затраты энергии на регенерацию абсорбентов значительно ниже, вследствии непрочности соединений абсорбент/примесь. Поэтому на практике иногда экономичнее использовать физические абсорбенты для очистки газа, хотя они и значительно дороже этаноламинов [86, 163, 127]. [c.336]

    Одной из трудиоудаляемых иримесей сероводородсодержащих природных газов является сероорганические соединения - меркаптаны RSH, сероокись углерода OS, сероуглерод S2. В ироцессе амиповой очистки, которая применяется в основном для извлечения HjS и СО2 (см. раздел 4.2), серо-органика извлекается частично. Для полной очистки газов применяют специальные процессы - адсорбция молекулярными ситами (см. раздел 4.3), абсорбция физическими абсорбентами, химические процессы и др. [c.424]

    По физическим свойствам наиболее эффективными растворителями для низкотемпературной очистки газа являются этилацетат, и-пропилацетат, метилэтилкетон и метанол. С учетом доступности и стоимости иреимущественное промышленное применение в качестве абсорбента получил метанол. [c.279]

    Для очистки газов использутатся различные методы. Исторически первыми и интенсивно используемыми до настоящего времени являются абсорбционные методы. Они состоят в поглощении удаляемых компонентов жидкими поглотителями (индивидуальными веществами, смесями или растворами) и основаны на физической абсорбции или абсорбции, сопровождающейся химической реакцией с активным компонентом абсорбента. Очистка газов осуществляется чаще всего промывкой газа в барботажных или насадочных противоточных аппаратах. Недостаток абсорбционных методов — загрязнение очищаемого газа парами растворителя. В таблицах 8.14—8.22 указаны возможности различных твердых веществ, жидких растворов и химических процессов к извлечению из газовых смесей их отдельных компонентов. [c.904]

    Разновидностью материалов, используемых в адсорбционной очистке газов и жидкостей, являются иониты. В отличие от традиционных сорбентов, иониты обладают комплексными свойствами адсорбентов по-вфхностного действия (по механическим характеристикам и физической форме), абсорбентов (адсорбат распространяется по всей массе ионита) и хемосорбентов (обеспечивается химическая селективность процесса) Иониты содержат функциональные фуппы, способные ионизации и обмену ионами с внешней средой. При иони зации функциональных групп образуются два вида ио нов 1) фиксированные ионы, закретшенные на каркасе (матрице) ионита и не переходящие во внешнюю среду  [c.254]

    Очистка газов от СОг и сернистых соединений органическими растворителями основана на физической абсорбции. С повышением парциального дав-.леиия кислого газа его растворимость в органическом растворителе возрастает, поэтому количество физического абсорбента, необходимое для очистки (в отличие от хемосорбента), остается постоянным прн увеличении содержания удаляемых примесей и заданной степени очистки. Отсутствие взаимодействия между газом и растворителем в жидкой фазе позволяет регенерировать растворители снижением давления и отдувкой без затрат тепла на разрушение комплексов в растворе. При снижении температуры очистки увеличивается поглотительная емкость раствора, снижается давление насыщенных паров абсорбентов и при заданной степени регенерации повышается глубина очистки. Физические абсорбенты могут поглощать сернистые соединения селективно. При совместной очистке газов от СОг и HjS органическими растворителями можно осуществлять регенерацию таким образом, чтобы повысить концентрацию HjS в кислом газе, поступающем на переработку в серу, за счет предварительной отдувки СОг из раствора, что невозможно при тепловой регенерации хемосорбентов (в последнем сл)П1ае HaS и СОа выделяются одновременно). [c.290]

    Некоторые формулы для расчета абсорбционных и хемосорбцион-ных процессов приведены в гл. V. Показатели абсорбционной очистки степень очистки (КПД) и коэффициент массопередачи к зависят от растворимости газа в абсорбенте, технологического режима в реакторе (ш, Т, Р) и от других факторов, например от равновесия и скорости химических реакций при хемосорбции. В хемосорбционных процессах, где в жидкой фазе происходят химические реакции, коэффициент массопередачи увеличивается по сравнению с физической абсорбцией. Большинство хемосорбционных процессов газоочистки обратимы, т. е. при повышении температуры поглотительного раствора химические соединения, образовавшиеся при хемосорбции, разлагаются с регенерацией активных компонентов поглотительного раствора и с десорбцией поглощенной из газа примеси. Этот прием положен в основу регенерации хемосорбентов в циклических системах газоочистки. Xe ю opбция в особенности применима для тонкой очистки газов при сравнительно небольшой начальной концентрации примесей. [c.169]

    Чосле насыщения углеводородами абсорбент поступает в десорбер 5, где из него при повышенной температуре удаляют углеводороды. Большей частью применяют тарельчатые десорберы. Поскольку в процессе очистки газа абсорбент то нагревается, то охлаждается, большое значение приобретает более полное использование физической теплоты раствора. Горячий регенерированный раствор, движущийся в теплообменнике 4 по одну сторону труб, отдает теплоту раствору, направляемому на регенерацию. Окончательный подогрев раствора до температуры десорбции и его охлаждение, необходимое для лучшего поглощения, производятся соответственно в подогревателе 3 и холодильнике 2. Циркуляция раствора в системе осуществляется при помощи насосов 6. [c.243]

    Создание процесса, при котором достигается существенное снижение расхода тепла при очистке газа от двуокиси углерода,— основная цель данной работы. Необходимый эффект может быть достигнут при изменении рецептуры самого абсорбента, а именно, при применении смешанных растворителей хемосорбента — хЧЭА и физического абсорбента — органического растворителя. [c.66]


Смотреть страницы где упоминается термин Очистка газа физическими абсорбентами: [c.141]    [c.251]    [c.433]    [c.29]   
Смотреть главы в:

Основы переработки природного газа и конденсата Часть 1 -> Очистка газа физическими абсорбентами




ПОИСК





Смотрите так же термины и статьи:

Абсорбенты

Очистка газа от кислых компонентов физическими абсорбентами



© 2025 chem21.info Реклама на сайте