Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярный вес полимеров и механические свойства

    Для решения проблемы создания полимеров с требуемыми физикомеханическими свойствами важнейшее значение имеет установление однозначной взаимосвязи между их строением (особенностями структуры и характера молекулярной подвижности) и макроскопическим поведением в условиях действия различных силовых полей. При этом наиболее ценную информацию дает исследование динамических механических свойств полимеров в широком температурно-частотном диапазоне, ибо для большинства полимеров механические свойства являются основными. [c.561]


    На физико-химич. и технич. свойства вулканизатов влияет не только тип поперечных химич. связей, но и взаимодействие макромолекул за счет водородных и др. видов межмолекулярных связей, возникающих вследствие наличия в полимере полярны групп и активных атомов, а также образование ассоциатов в результате взаимодействия самих поперечных связей (ионных и полисульфидных). Поэтому необходимо учитывать изменение при В. межмолекулярного взаимодействия вследствие присоединения к макромолекулам вулканизующих агентов и продуктов разложения ускорителей, антиоксидантов и др. Из-за отсутствия разработанной молекулярной теории механических свойств полимеров представления о влиянии структуры вулканизатов на их прочностные и эластические свойства носят характер гипотез. [c.266]

    В настоящем обзоре описываются основные результаты работ 25, посвященных изучению зависимости механической прочности некоторых твердых полимеров от молекулярной ориентации. Теоретические выводы, сделанные в этих работах, занимают промежуточное положение между феноменологической и молекулярной теориями механических свойств материалов. [c.414]

    Тепловое старение при температуре 333 К па воздухе в течение 3000 ч не сопровождается сколько-нибудь заметным изменением молекулярной массы и молекулярномассового распределения, что может объясняться отсутствием значительных химических превращений полимера, Механические свойства, несмотря на это, изменяются. В работах, посвященных изучению процессов старения различных полимеров, высказывается мнение о том, что кроме химических превращений полимера, инициируемых теплом, светом и другими внешними воздействиями, старение может вызываться физическими процессами. Эти процессы в первую очередь затрагивают вторичную структуру, которая формируется на стадии переработки полимера в изделие. [c.114]

    Макромолекула ПЭВД представляет собой длинную метиленовую цепь с небольшим числом метильных групп. С увеличением молекулярной массы полимера механические свойства его улучшаются. [c.276]

    Механические свойства полимеров. Механические свойства определяются элементным составом, молекулярной массой, структурой и физическим состоянием макромолекул. [c.463]

    Степень полимеризации ПВС. С повышением молекулярного веса полимеров механические свойства изготовленных из них изделий улучшаются. Однако по достижении определенной степени полимеризации дальнейшее увеличение показателей механических свойств замедляется. Кроме того, переработка более высокомолекулярных продуктов сопряжена со значительными технологическими трудностями. [c.193]


    Важнейшей характеристикой полиизобутилена является его средний молекулярный вес. Механические свойства улучшаются с увеличением молекулярного веса, полимеры же с молекулярным весом ниже 50 ООО представляют собой вязкие жидкости. Фракционирование полимеров может быть проведено осаждением ацетоном из разбавленных растворов в гексане или Циклогексане. Молекулярный вес и характеристическая вязкость растворов полиизобутилена связаны следующей зависимостью [253]  [c.78]

    В последнее время были развиты методы растворной полимеризации для получения чередующихся (альтернантных) сополимеров [16]. Такой подход к проблеме сополимеризации позволяет получить полимеры принципиально новой структуры и, возможно, избежать проблем, связанных с композиционной неоднородностью сополимера. Альтернантные сополимеры бутадиена с нитрилом акриловой кислоты уже выпускаются в промышленном масштабе. Показано, что в том случае, когда эти сополимеры содержат звенья бутадиена в гране-конфигурации, полимерные цепи способны к ориентационной кристаллизации [17, 18]. Для получения резин с оптимальными физико-механическими свойствами необходимо получение альтернантных сополимеров с достаточно высокой молекулярной массой ([г)] = 2—2,5). [c.63]

    Таким образом, требования, предъявляемые к молекулярному строению высокомолекулярных эластомеров с точки зрения получения резин с наилучшим комплексом физико-механических свойств и в то же время высокотехнологичных, являются достаточно противоречивыми. Именно для разрешения этого противоречия во всех практически реализуемых процессах синтеза каучуков необходимо проводить работы по регулированию ММР (или в более общем случае регулированию молекулярного состава) образующихся полимеров с целью их оптимизации. Вопрос о синтезе каучуков с оптимальным молекулярным составом в каждом конкретном случае должен решаться отдельно с учетом существующей технологии переработки и требований, предъявляемых к основным показателям резин. [c.93]

    На кинетику полимеризации изопрена, микроструктуру и физико-механические свойства полимера вредное влияние оказывают примеси соединений различных классов. Наиболее сильным каталитическим ядом является циклопентадиен при его содержании в реакционной смеси 0,014-10 моль/л наблюдается значительный индукционный период и замедление всего процесса полимеризации, а при содержании 1,5-10 моль/л катализатор разрушается полностью [47]. При низких концентрациях циклопентадиена не происходит снижения молекулярной массы полимера, при высоких концентрациях молекулярная масса может снижаться в 3—4 раза. [c.213]

    На физико-механические свойства термоэластопластов влияют количество связанного стирола (а-метилстирола), распределение его в полимере, молекулярная масса блоков и их молекулярномассовое распределение, микроструктура полидиенового блока. На примере ДСТ-30 показано, что оптимальными свойствами обладают полимеры с узким ММР центрального и конечных блоков [22]. Наличие примеси двухблочного полимера резко уменьшает сопротивление разрыву термоэластопластов. [c.287]

    При хранении на рассеянном свету полиизобутилен практически не изменяет своих свойств. На прямом солнечном свету и под действием ультрафиолетового облучения происходит частичная деструкция макромолекул, сопровождаемая снижением молекулярной массы и ухудшением физико-механических свойств в массе полимера образуются включения низкомолекулярных фракций. Введение в полиизобутилен очень малых добавок стабилизаторов фенольного типа, а также наполнителей (сажа, тальк, мел, смолы) значительно увеличивает его светостойкость. При комнатной температуре он устойчив к действию разбавленных и концентрированных кислот, щелочей и солей. Под действием концентрированной серной кислоты при 80—100°С полиизобутилен обугливается, а под действием концентрированной азотной кислоты деструктирует до мономера и жидких продуктов. Под действием хлора, брома и хлористого сульфурила подвергается гало-генированию с частичным снижением молекулярной массы. [c.338]

    Физико-механические свойства поливинилового спирта зависят от его молекулярного веса и содержания ацетатных групп. С повышением молекулярного веса и уменьшением содержания ацетатных групп увеличиваются прочность и теплостойкость полимера. [c.40]

    Физико-механические свойства материалов зависят не только от средней молекулярной массы, но и от вида распределения полимерных цепей по молекулярным массам. При одном и том же значении средней молекулярной массы комплекс эксплуатационных свойств полимера тем лучше, чем уже распределение по молекулярным массам, т.е. чем больше доля полимерных цепей, приближающихся по длине к среднему значению. [c.56]


    Абсолютные значения приведенной степени однородности для одного полимера существенного интереса не представляют. Однако, если сравнивать значения 5п различных образцов одного и того же полимера, то оказывается, что чем ниже приведенная степень однородности, тем равномернее полимер по своему молекулярному составу. На рис. 1.26 приведены результаты изучения влияния полидисперсности на физико-механические свойства различных волокон. Уменьшение содержания низкомолекулярных фракций в полимере улучшает комплекс физикомеханических свойств формуемых из них волокон. Содержание этих фракций не должно превышать 3-5%. С увеличением гибкости полимерных цепей влияние молекулярной однородности полимера на физико-механические свойства волокон и пленок возрастает. Увеличение полидисперсности сравнительно гибкоцепных полимеров приводит к резкому ухудшению прочностных, и в особенности усталостных, характеристик волокон. С повышением жесткости макромолекул волокнообразующих по- [c.63]

    Такая интенсивная зависимость ло = / () обусловливает необходимость ограничения молекулярной массы волокнообразующих полимеров. Несмотря на существенное улучшение физико-механических свойств полимерных материалов (нитей, пленок и др.) при увеличении Му,, возрастание ло расплавов [c.198]

    Влияние величины индекса расплава полиэтилена, Все важные механические свойства полимеров, особенно прочность при разрыве, удлинение, ударная прочность и эластичность, зависят от молекулярного веса, косвенным показателем которого является индекс расплава [91. [c.128]

    Механические свойства частично-кристаллических полимеров ниже температуры Т, сильно зависят от их степени кристалличности. Чем выше кристалличность полимера, тем больше его хрупкость. Модуль сдвига высококристаллических полимеров достигает 10- МПа и практически не зависит от времени. При температуре выше Т,п модули частично-кр1 сталлических полимеров измерить трудно, потому что в отличие от аморфных полимеров они превращаются в жидкости, обладающие практически постоянной энергией активации вязкого течения. Только при очень большой молекулярной массе их поведение напоминает поведение резин. [c.258]

    Наша книга не претендует на охват всех разделов физики н механики полимеров. В трех ее частях представлены наиболее важные сведения о строении и свойствах полимеров. В первой рассмотрены строение, физические состояния, кристаллизация и стеклование как основные фазовые и релаксационные переходы, статистическая и молекулярная физика макромолекул и полимерных сеток, а также некоторые вопросы термодинамики механических свойств полимеров. Во второй рассмотрены механические, электрические, магнитные и оптические свойства, относящиеся к релаксационным явлениям в полимерах. В третьей представлены важнейшие тепловые и механические свойства, связанные с прочностью и разрушением, а также с трением и износом полимеров. [c.8]

    Известно, что свойства любого твердого тела определяются строением и взаимным расположением образующих его молекул. В течение ряда лет считали, что все физические свойства полимерных тел полностью определяются строением макромолекул (молекулярной массой, гибкостью цепей). Большая заслуга в объяснении механических свойств полимеров на структурной основе принадлежит советским ученым и в первую очередь академику В. А. Каргину, который установил, что одной из важнейших особенностей полимеров является многообразие их надмолекулярных структур. Если термин строение полимеров характеризует общие черты молекулярной упорядоченности (определенным образом расположенных друг относительно друга макромолекул), то термин структура полимеров характеризует более детальные отличия молекулярной упорядоченности в полимерах. [c.18]

    В процессе эксплуатации и переработки полимерные материалы подвергаются совместному воздействию различных факторов — тепла, света, кислорода воздуха, радиации, химических реагентов, механических сил, а также микроорганизмов. При этом протекают различные физические и химические процессы, приводящие к ухудшению физико-механических свойств полимера. Чаще всего ухудшение эксплуатационных характеристик полимеров вызывается разрывом химических связей в основной цепи макромолекулы и уменьшением их молекулярной массы. [c.67]

    Деструкция полимеров — это разрушение макромолекул - под действием различных физических и химических агентов. В результате деструкции, как правило, уменьшается молекулярная масса полимера, изменяется его строение, а также физические и механические свойства полимер становится непригодным для практического использования. Следовательно, этот процесс является нежелательной побочной реакцией при химических превращениях, переработке и эксплуатации полимеров. В то же время реакции деструкции в химии высокомолекулярных соединений играют и положительную роль. Эти реакции используют для получения ценных низкомолекулярных веществ нз природных полимеров (например, аминокислот из белков, глюкозы из крахмала), а также для частичного снижения молекулярной массы полимеров с целью облегчения их переработки. С помощью некоторых деструктивных процессов можно определять строение исходных полимеров и сополимеров. Процессы, приводящие к разрыву химических связей в макромолекулах, как уже отмечалось, используют для синтеза привитых и блок-сополимеров. [c.67]

    Полимеры обладают особыми механическими свойствами, принципиально отличающими их от низкомолекулярных твердых тел и жидкостей. Эти отличия обусловлены цепным строением и высокой молекулярной массой полимерных молекул. [c.139]

    Тем не менее средняя величина молекулярной массы полимера является его характеристикой, поскольку одинаковые по химической природе полимеры различной средней молекулярной массы очень существенно различаются по физическим и механическим свойствам. [c.8]

    Состав и строение макромолекул зависят не только от химического состава и строения молекул мономера, но и от способа, с помощью которого осуществлено соединение малых молекул в большие. При этом как в цепных, так и в ступенчатых процессах синтеза полимеров невозможно представить себе случай, когда все образующиеся макромолекулы имели бы одинаковую степень полимеризации, т. е. одинаковую молекулярную массу. В любом образце полимера присутствуют вместе макромолекулы разных размеров, т. е. любой полимер неоднороден по молекулярной массе. Эта полимолекулярность является одним из основных понятий в химии и физике полимеров. Существенные прочностные свойства полимеров проявляются при довольно больших значениях молекулярной массы (5—10 тыс. ед.) и далее возрастают с ее увеличением. Регулирование молекулярной массы полимера в процессе синтеза является, таким образом, важным фактором влияния на его механические свойства. [c.16]

    Повышенное содержание высокомолекулярных фракций в полимере сообщает ему более высокие прочностные свойства, повышенную твердость и температуростойкость. Начало пластического течения таких полимеров смещается в область более высоких температур. Полимеры с большим содержанием низкомолекулярных фракций имеют низкие прочностные свойства и в целом характеризуются худшими механическими свойствами. Средняя молекулярная масса и молекулярно-массовое распределение являются важными контрольными величинами при получении полимеров с нужными механическими свойствами. [c.17]

    В период с 1937 г. и до конца жизни в НИФХИ под руководством В. А. Каргина проводились фундаментальные исследования в области физико-химии растворов полимеров, механических свойств высокомолекулярных соединений, механизма образования полЕмерных студней, процессов структурообразования в кристаллизующихся полимерах и морфологии кристаллических структур, исследование влияния надмолекулярной структуры на механические и другие физические свойства полимеров, изучение характеристик вязкотекучего состояния и процессов структурообразования в расплавах полимеров, разработка методов модификации физико-механических свойств кристаллических полимеров, а также исследования в области молекулярной пластификации полимеров, приведшие к установлению правил объемных долей. [c.8]

    Порядок изложения в предлагаемой книге в общем соответствует схеме прочитанных лекций. Но некоторые разделы содержат дополнительный материал. Так, две лекции объединены в гл. I, включена дополнительная гл. П по экструзионной технике, а три лекции вообще не представлены в книге. Содержание книги делится на три основных раздела гибкоцепные полимеры, жестко- и полужестко-цепные полимеры и молекулярная основа механических свойств. На семинаре по каждому из разделов проводилась подробная дискуссия аннотации прочитанных лекций и дискуссии опубликованы ранее ( him. Ind., октябрь 1977 г.). [c.10]

    При практическом применении синтетических полимеров регулирование длины молекулярной цепи конечного продукта имеет решающее значение. Механическая прочность каучуков, пластмасс и волокнообразующих полимеров в целом резко снижается при значениях молекулярного веса менее 20 000—30 ООО. При очень больших значениях молекулярного веса механические свойства приближаются к асимптотическому пределу и не зависят от дальнейшего увеличения длины цепи. Однако такие высокомолекулярные материалы чрезвычайно вязки даже при повышенных температурах, при которых полимеры перерабатываются в изделия различной формы. Следовательно, химик-технолог, имеющий дело с полимерными материалами, должен регулировать молекулярный вес материала как с точки зрения его свойств в условиях промышленного применения, так и с точки зрения технологических характеристик. Цель состоит в использовании возможно более монодисперсного полимера. Практические свойства полидисперсного материала в первом приближении зависят от средневесового значения молекулярного веса. Несмотря на это, другие средние значения молекулярного веса являются полез- [c.34]

    С повышением молекулярного веса механические свойства полипропилена возрастают, в частности, увеличиваются предел текучести и предел прочности нри растяжении. Полимер с молекулярным весом ниже 35 ООО является хрупким. Если полиироиилен (мол. вес 35 000—160 ООО) полностью освободить от фракций нерегулярного строения, то предел текучести его не изменяется с изменением молекулярного веса и достигает 360 кгс см . Повышение температуры резко снижает прочность полипропилена, так при 120° С предел текучести достигает 80—90 кгс/см" . [c.71]

    Молекулярная подвижность в полимерах и их физические состояния. В ряду макроскопических свойств полимерных материалов, определяющих области их применения, особая роль принадлежит механическим свойствам. Они у полимеров являются уникальными, не характерными для обычных низкомолекулярных веществ. Это обусловило выделение высокомолекулярных соединений в особый класс материалов, поведение которых не может быть охарактеризовано на основе обычных представлений об агрегатных состояниях вещества. Как известно, в молекулярной физике эти состояния определяют в зависимости от интенсивности и характера теплового движения его основных структурных и кинетических единиц. В случае низкомолекулярных веществ оба типа единиц совпадают, для полимеров же такое совпадение не имеет места. --Их- структурной единицей является макромолекула, но перемещение макромолекулы — это не единовременный акт, а совокупность последовательных перемещений отдельных сравнительно независимых субчастей цепи — кинетических сегментов. Такой сегмент, содержащий от нескольких единиц до нескольких десятков мономерных звеньев, и является основным типом кинетических единиц в полимере. [c.39]

    Следует учитывать, что концентрированные растворы и расплавы гибко- и полужесткоцепных полимеров представляют собой истинные системы. Структурно-механические свойства (в том числе и реологические) таких систем зависят от термодинамической гибкости и молекулярной массы полимера. Структура таких жидкостей может быть обусловлена балансом внутри- и межцепных взаимодействий, приводящих к возникновению [c.172]

    Механические свойства кристаллизующихся полимеров тесно связаны с молекулярной структурой п температурно-силовыми условиями испытаний. Основное отличие этих материалов от аморфных заключается в том, что при их растяжении (так же, как и при растяжении пластической стали) образуется шейка. Ио в отличие от пластичных металлов шейка по мере растяжения прорастает через весь образец. В шейке происходит скачкообразное, ступенчатое разрушение кристаллической структуры и образование новых вытянутых и ориентированных вдоль действия силы структур. При этом в первоначально изотропном материале возникает анизотропия — резкое различие свойств вдоль паправлепия нагрузки и во взаимно иерпепдикулярпых паправлениях. Такая картина может повторяться, если провести растяжение об- [c.50]

    Изучение фракционного состава позволяет судить о механических свойствах полимера. Полимеры, содержащие большое количество низкомолекулярных фракций, имеют более низкую температуру размягчения, высокую пластичность в размягченном состоянии, обладают хладотекучестью в твердом состоянии, повышенной упругостью и морозостойкостью, т. е. ведут себя как пластифицированные полимерные вещества. Полимеры, в которых превалируют фракции высокого молекулярного веса, обладают высокой прочностЕзЮ, твердостью или эластичностью, переходят в размягченное состояние при более высокой температуре и пе столь пластичны, как полимеры, в большей степени пластифицированные низкомолекулярными фракциями. [c.75]

    Орто- и пара-кре.золы также вступают в реакцию с формальдегидом. Образующиеся полимеры имеют линейную структуру, иизкий молекулярный вес и потому легко растворяются в орга нических растворителях и не утрачивают термопластичности. Поскольку извлечение л-крезола из смеси изомеров связано со значительными трудностями (вследствие близости температур кипения изомеров), для промышленных т елей применяют резолы, получаемые из смеси изомеров крезола (трикрезол). Трикре-зол, реагируя с формальдегидом, образует резит только в том случае, если количество ж-крезола в смеси изомеров не менее 40"п Такой полимер по физико-механическим свойствам не уступает феипло-формальдегидному резиту. [c.381]

    О влиянии длины цепей и их распределения на механические свойства изотропных и подвергшихся ориентационной вытяжке полимеров в литературе имеются весьма противоречивые сведения. Имеются данные о линейной зависимости между прочностью капронового волокна и величиной обратной молекулярной массы , но это — кристаллизующийся полимер и поэтому к подобным корреляциям следует отнестись осторожно. Наиболее существенные изменения прочности связываются с областью молекулярных масс З-Ю —15 10 т. е. там, где резко меняется прочность изотропного полимера. Обнаруживается также линейная зависимость между логарифмом прочности волокна и обратной величиной молекулярной массы полимеров, однако, в случае волокон, которые всегда кристалличны, тип зависимости любого параметра от М связан не с готовой структурой, а с технологической предысторией, где доминируют реологические факторы. Для ориентированных пленок поливинилацетата наблюдается линейное увеличение прочности с молекулярной массой. Однако эта зависимость четко проявляется лишь по достижении молекулярных масс, при которых прочность изотропного поливинилацетата становится неизменной. При изучении аморфных полиметилметакрилата, полистирола и поливинилацетат, получаются близкие результаты, хотя соответствующие зависимости не являются строго линейными. На механические свойства ориентированных полимерных материалов гораздо больше влияют условия формован 1я и вытяжки волокон и пленок [22].-Влияние молекулярной массы на механические свойства линейных аморфных полимеров следует оценивать с учетом изложенных представлений об их квазисетчатом строении. Прочность и другие механические свойства полимеров определяются их строением, однако при формовании и вытяжке волокон молекулярная масса полимера регулирует протекание процессов ориентации макромолекул, определяя структурные особенности и свойства получаемых полимерных материалов. [c.197]

    Процессы релаксации оказывают существенное влияние на самые разные физические свойства полимеров. При этом различие надмолекулярной организации полимеров наиболее существенно сказывается на характере изменения их вязкоупругих механических свойств. Существование в полимерах надмолекулярных структур разного вида и степени соверщенства определяет сложный характер протекания релаксационных процессов, что связано с неоднородностью молекулярной упорядоченности. Процессы молекулярной подвижности в неупорядоченной (аморфной) части полимера характеризуются меньшими временами и более узким релаксационным спектром, тогда как для кристаллической части они затруднены (велико время релаксации и широк спектр). На границе аморфных и кристаллических областей и в местах дефектов структуры соответствующие релаксационные характеристики имеют промежуточное значение. [c.138]

    Изомерия у полимеров. Большие размеры макромолекул полимеров обусловили и еще одну важную особенность их в сравнении с низкомолекулярными вен1ествами той же химической природы. Как известно, уже у бутана могут быть два структурных изомера — нормальный и изо-бутан. Огромная макромолекула полимера может быть линейной и разветвленной, т. е. иметь боковые ответвления от основной цепи. Если при этом молекулярная масса линейной и разветвленной молекул одинакова, то они являются изомерами. Физические и механические свойства полимеров, состоящих из линейных макромолекул, сильно отличаются от свойств полимеров, состоящих из разветвленных макромолекул (например, полиэтилен высокой плотности и полиэтилен низкой плотности). [c.8]


Смотреть страницы где упоминается термин Молекулярный вес полимеров и механические свойства: [c.269]    [c.73]    [c.307]    [c.73]    [c.114]    [c.393]    [c.42]    [c.49]    [c.51]    [c.105]   
Физико-химия полимеров 1963 (1963) -- [ c.234 ]




ПОИСК





Смотрите так же термины и статьи:

ДНК молекулярные свойства

Механические и молекулярный вес полимера

Механические свойства полимеро

Полимеры механические свойства



© 2025 chem21.info Реклама на сайте