Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Элемент активации

    Таким образом, было показано, что не меньшая, чем со щелочноземельными элементами, активация бис-азосочетания наблюдается и в случае применения щелочных элементов, но при гораздо большей их концентрации. Наибольшая активация наблюдается при введении солей лития, затем натрия и калия. Использование солей одновалентных элементов имеет то преимущество перед солями [c.91]


    На первом уровне рассматриваются процессы, протекающие в единичном структурном элементе — поре — с учетом ее реальных геометрических характеристик и их влияния на процессы переноса. Элемент характеризуется коэффициентами переноса, константами скорости химических реакций, адсорбции, энергиями активации, условиями возникновения межфазных границ и т. д., для него должны быть определены внешние условия — температура, давление, концентрации исходных веществ и продуктов и др. В средах с неоднородной пористой структурой, характеризующейся распределением пор по размерам, учитывается также влияние неравномерности распределения размеров пор на характер протекающих в них процессов. [c.141]

    Согласно более ранней, имеющей почти полуторавековую историю, гетерогенной трактовке процессов электрохимической коррозии металлов (теории локальных элементов), участки анодной и катодной реакций пространственно разделены и для протекания коррозии необходим переток электронов в металле и ионов в электролите. Такое пространственное разделение анодной и катодной реакций энергетически более выгодно, так как они локализуются на тех участках, где нх прохождение облегчено (энергия активации реакции меньше). [c.186]

    Из инструментальных методов, позволяющих определять содержание всех элементов, входящих в состав загрязнений, применяют метод нейтронной активации, полярографический и спектральный анализ. [c.34]

    Метод нейтронной активации заключается в облучении пробы масла с содержащимися в нем загрязнениями пучком нейтронов в результате элементы, входящие [c.34]

    Энтропия, как функция термодинамической вероятности системы, характеризует хаотичность расположения ее элементов. В нашем случае, энтропия активации вязкого течения представляет собой разность энтропий активированного и исходного состояний. [c.23]

    Из данных табл. 2.2 с учетом того, что ( он ЯнУ > 1, следует, что энергия активации распада углеводородной молекулы на элементы < 42—48 кДж/моль (10—20 ккал/моль). Такое низкое значение соответствует тому, что молекула реагирует с активным центром углеродной поверхности как со свободным радикалом. [c.92]

    Образование сажевых частиц складывается из двух процессов— образования зародышей и их роста. Зародыши растут, так же как и пироуглерод, в результате в основном прямого разложения углеводородных молекул до элементов. Образование же зародышей является сложным малоизученным процессом, имеющим очень высокую ( 110—175 ккал/моль) энергию активации. Наиболее вероятно, что зародыши сажевых частиц образуются в результате цепной разветвленной реакции. [c.94]


    Наибольшее промышленное распространение получили методы ацетилирования целлюлозы уксусным ангидридом в гомогенной и гетерогенной средах. Целлюлоза слегка набухает в ледяной уксусной кислоте. Для интенсификации процесса ацети-лирования целлюлозу подвергают "активации" - обрабатывают жидкой или парообразной уксусной кислотой. При этом происходит переход аморфных областей целлюлозы из стеклообразного состояния в высокоэластическое, приводящий к увеличению подвижности структурных элементов целлюлозы. [c.322]

    Анализ полученных данных показал возможность высвобождения (активации) наноструктурных элементов ШУ на примере модельных экспериментов получения водных коллоидов из ШУ, каталитических реакций, моделирующих процессы ожижения угля, структурировании ШУ в высоконаполненных полимерных композиционных материалах. [c.174]

    Методы релаксационной спектрометрии позволяют получать сведения о ряде конкретных характеристик элементов структуры полимеров. Так, по времени релаксации (их численным значениям при данной температуре) судят о подвижности тех или иных элементов структуры, а из температурной зависимости т и зависимости т от напряжения получают данные об энергии активации релаксационных процессов Га, о величине предэкспоненциального коэффициента В в формуле (1.23), а через него — о размерах релаксаторов. [c.61]

    Теория Эйринга отличается от теории Я. И. Френкеля лишь ббльшим формализмом, который, однако, оставляет некоторую свободу для последующих интерпретаций. Эйринг рассматривает не конкретные частицы — молекулы или атомы, а некоторые эффективные элементы течения, для которых по-прежнему верны соотношения (V. 4) и (V. 6). Однако в зависимости от характера этих элементов будут меняться как энергия активации, так и ее составляющие Н и Т8. (Правда, именно Эйринг предложил упро- [c.164]

    Как и в случае водоактивируемых элементов, контакт электролита с электродами не является достаточным условием мгновенного приведения в рабочее состояние ампульной батареи. Требуется некоторое время, необходимое для пропитки сепаратора электролитом, а также для выведения электродов из состояния пассивности, в котором они могут находиться. Но в отличие от наливных элементов активация ампульных элементов протекает быстро, занимая от долей секунды до десятков секунд в зависимости от природы активных масс и электролита, материала сепараторов, конструкции элемента, способа подачи электролита и других факторов. [c.252]

    Описанные случаи образования аммиака при некаталитических процессах приводят к выводу, что для осуществления реакции между Н, и N2 в газовой фазе с образованием аммиака необходима активация обоих компонентов. Изложенный выше механизм каталитического синтеза аммиака включает, как необходимый момент каталитического ироцесса, активацию азота, и как возможный элемент — активацию водорода. В общем можно считать, что такой механизм каталитического синтеза аммиака, допускающий переход молекул азота через реакцию с активными поверхностными атомами железа в форму поверхностного нитрида, способного гидрироваться до аммиака адсорбированным водородом, не противоречит ни одному из экспериментально извесгаых свойств азота или водорода. [c.162]

    Контакт электролита с электродами не является достаточным условием приведения батареи в действие. Здесь также требуется некоторое время, необходимое для пропитки сепаратороов и выведения электродов из полупассивного состояния. Но в отличие от водоактивируемых элементов активация ампульных элементов [c.144]

    Если отождествлять энергию активации с прочностью связей в молекуле присадки (в основном связью между активным элементом и остальным фрагментом), то она, определяя реакционную способность соединения, характеризует также его противо-изщзсные (противозадирные) свойства. Чем меньше прочность этой связи, тем выше способность смазочного материала противодействовать задиру и заеданию В экстремальных режимах трения. [c.245]

    Выше были описаны случаи, когда элементарный акт легче осуществляется на твердой поверхности, чем в объеме. Учитывая это, можно предположить, что многие гомогенные реакции осложнены гетерогенными стадиями на стенках сосуда, в котором протекает исследуемый процесс. Например, при комнатной температуре реакция разложения озона является гетерогенной со сравнительно низкой энергией активацией и идет на стенках сосуда. С повышением температуры все большую роль начинает играть чисто гомогенный процесс с энергией активации порядка 24 000 кал моль, и в интервале температур 60—100° С его скорость настолько превышает скорость гетерогенного разложения, что наблюдаемое экспериментальное значение скорости целиком характеризует гомогенный процесс. Аналогичные явления наблюдаются и во многих других случаях, например при разложении газообразных гидридов элементов V группы (ЫНз, РНа, АяНа, 5ЬНз). [c.132]

    Дальнейшие систематические исследования каталитических свойств природных алюмосиликатов (флоридина и кавказской активной глины) проводит С. В. Лебедев [12, 13]. Он последовательно вскрывает глубокие возможности низкотемпературных каталитических преобразований углеводородов над природными катализаторами — флоридинами, кавказскими глинами и каолинами — в температурном интервале от —80 до 260 С [14—22]. С. В. Лебедев придавал особое значение активности катализатора. Он первый применил искусственную тепловую активацию природных г.тии и изучил механизм изомеризации олефипов под воздействием алюмосиликатов, показав способность алюмосиликатов вызывать по только неремоп ение двойной связи в цепи молекулы, но и скелетньсе изменення, приводящие к переходу несимметричной структуры олефипов в симметричную. Наконец, с исчерпывающей полнотой С. В. Лебедев доказал, что в области температур выше 250 °С парофазный процесс катализа над природными алюмосиликатами является по существу типичным сложным процессом каталитического крекинга, когда гладкая деполимеризация полимерных олефинов переходит в совокупность реакций дегидрогенизации, распада на элементы и глубокого дегидроуплотнения молекул с одновременным образованием парафинов. [c.158]


    Улучшению каталитических свойств цеолита способствует обмен аммонийной формы на трехвалентные катионы редкоземельных элементов (РЗЭ). Полноте ионообмена способствует ведение этой гидротермальной стадии при повышенных температурах (230 С) в автоклаве под давлением. Деалюминирование и последующее де-гидроксилирование протекают при 200-600 С. Активация в присутствии NH3 или паров воды при температурах выше 750 С дает цеолит, стабильный при температурах выше 700 С. Его называют ультраста-бильным цеолитом. [c.104]

    Известно [14], что скорость образования окиси этилена нелинейно зависит от степени покрытия поверхности кислородом и имеет резкий максимум при степени покрытия 0,5—0,6. Такой характер скорости обусловлен, по-видимому, структурным превра-щеппем поверхности металла и связанным с этим изменением типа связи металла с кислородом. Это происходит в результате взаимодействия кислорода как с поверхностью катализатора, так и с его приповерхностными слоями. Кислород, внедряясь в приповерхностные слои серебра, оказывает, очевидно, модифицирующее действие, подобное модифицирующему действию других электроотрицательных элементов [15]. Аналогия между глубоко адсорбированным кислородом и электроотрицательными промоторами и характер изменения активности и избирательности катализатора прп введении промоторов позволяют предположить, что эффект повышения селективности окисления этилена в нестационарном циклическом режиме обусловлен понижением энергий активации стадий, определяющих скорость окисления этилена по маршрутам полного и парциального окисления, причем более сильным понижением по последнему. Нестационарные условия позволяют, очевидно, провести процесс при более высоких концентрациях реакционного кислорода, благодаря чему и достигается более высокая избирательность. Пока нельзя исключить, что экстремум избирательности при величине периода 30 с связан с динамическими свойствами реактора и не обусловлен динамическим свойством поверхности катализатора. [c.35]

    В языке SMALLTALK имеются только объекты . Объекты могут представлять элементы программы (классы и их экземпляры), устройства ввода-вывода и их части (окна экрана), сегменты памяти, внутренние структуры интерпретатора (например, записи активации, сегменты стека и цепочки команд). При этом обращение ко всем объектам производится единообразно [78]. [c.236]

    Кояструктивно эта слстема оформлена в виде галетных элементов, хорошо работаю-ш 1х при низких температурах и высоких плотностях тока. Для активации достаточно погрузить элементы на короткий срок в воду (морскую или пресную — безразлично). Недостатком по сравнению с элементами хлорсеребряно-магниевой системы является несколько пониженная удельная энергия, что вызвано меньшим (на 0,1 в) значением э. д. с. [c.881]

    Типичным примером неразветвленной цепной реакции является взаимодейств1ие хлора с водородом. Прямая реакция при парных соударениях молекул обоих элементов маловероятна — она требует очень значительной энергии активации. Однако химическсе превращение оказывается возможным с помощью другого механизма. [c.25]

    По Магарилу [74], газообразное сырье разлагается до элементов прн соударении с поверхностью твердой фазы при низких значениях энергии активации распада (42—84 кДж/моль) и температурах порядка 800—900 °С. Ассоциаты, возникающие в жидкой фазе, являются основой для формирования технического углерода в газовой фазе. [c.164]

    Метод химической ионизации состоит в образовании ионов под действием других ионов, генерируемых в отдельной камере. При химической ионизации положительных ионов генерируемые ионы представляют собой доноры протонов, которые при столкновении с молекулами анализируемых веществ отдают )1м протон, образуя при этом псевдомолекулярные ионы (М+Н)+- По последним можно устанавливать молекулярную массу компонентов в смеси. Аналогично происходит образование отрицательных ионов с акцепторами протонов (С1 , ОН- и др.). Анионная химическая ионизация (с 0Н ) была применена для анализа 17 образцов нефтей с целью идентификации их месторождений. Для описания конкретной нефти бралось 30 характеристичных пиков (для сокращения процесса анализа) [204]. Химическая ионизация с положительными ионами позволяет определить тип азотсодержащих соединений в нефтях [205]. Недостатком метода является его малая эффективность для определения полной структуры или даже элементов структуры компонентов ввиду малой степени фрагментации, отсутствию данных по закономерностям химической ионизации многих классов соединений, встречающихся в нефтях. Однако сочетание этого метода с другими методами масс-спектрометрии может дать полезные сведения для анализа нефтей. Например, распад ионов, полученных при химической ионизации смеси углеводородов и серусодержащнх соединений с выделением частицы 5Н (масса 33) был применен при анализе на приборе ударной активации [206]. [c.136]

    При статическом нагружении материала происходит активация отде, 1ьны. . ерен, сегментов и кластеров, а также элементов оболочки кластеров. Происходит "сток" энергии в зонь с наименьшим производством энтропии, каковыми являются границы зерен, частиц и кластеров. Таким образом, поглощение энергии происходит на трех структурных уровнях, С другой стороны, структурные элементы (атомы, кластеры, сег.менты) стре,мятся занять болеэ выгодное положение, с точки зрения наи.меньшего производства энтропии, которое на каждом структурно,м уровне может достигать определенного критического значения. Элементарный акт разрушения при это.м нронсхолш на том структурно,м уровне и в том локальном объеме, где первым достигается критический уровень энергии, определяемый силой взаимодействия структурных составляющих данного уровня. Элементарный акт разрушения заключается в разрыве связей и образовании поверхности, отличающейся локально высоким значением энтропии, и, как следствие этого, высокой активностью периферийных слоев, формирующих этот уровень (атомы в кластерах, кластеры в сегментах, сегменты в зернах). В зависимости от того, какой структурный, уровень определяет максимальный сток энергии, будет зависеть характер разрутиения - межзеренное или транскристаллитное [11], [c.27]

    В предыдущей главе, в разделе, посвященном молекулярным теориям разрушения, почти всегда для описания процесса активацпи разрушения элемента использовалось уравнение Аррениуса. Оказывается, что, как правило, энергия активации <7о равна (или предполагается равной) энергии диссоциации слабейшей основной связи цепи ). Прежде чем продолжить дальнейший анализ кинетики разрушения элемента, а по возможности и цепи, следует дать определение механической прочности связи элемента и цепи. Для этого напомним в данной главе основные результаты квантовой химии [1, 2], которые касаются прочности внутримолекулярных связей, и такие факторы, влияющие на потенциал связи, как электронное возбуждение и ионизация. [c.95]

    Сильное влияние на параметры диффузии оказывают разного рода примеси на поверхности и в объеме твердых тел. Характер влияния некоторых легирующих элементов на параметры. диффузии углерода в у -железе, энергию активации Е и предэкспоненциальиый множитель Оо согласно работе [59] обобщены в табл. 2.9. [c.112]

    Пробы и стандартные образцы, подготовленные к облученгао, помещают в цилиндрические алюминиевые или полиэтиленовые контейнеры диаметром 15-20 мм и длиной 150-200 мм. Продолжительность облучения зависит от состава определяемых элементов и периода полураспада образующихся нуклидов. Для повышения чувствительности обычно используют относительно короткоживущие изотопы. Так, определение ртути проводят по Hg (Т /2 = 64,1 ч), а не по (Т /2 = 46,6 сут.). Применение короткоживущих радионуклидов привлекательно еще и тем, что анализ осуществляется за короткое время Кроме того, малая продолжительность облучения позволяет избежать заметной активации мешающих элементов Однако из-за быстрого уменьшения активности измерения необходимо производить вблизи источников нейтронов, что не всегда возможно Наиболее распространены методы нейтронно-активационного анализа на основе средних и долгоживущих изотопов с Т)/2 > 2-3 сут Продолжительность облучения проб природных сред в этом случае равна 10-30 ч, иногда нескольким суткам. Для природных вод оптимальное время вьщержки проб в реакторе составляет 10-50 сут. [112 . При этом возможно определение элементов в пробах воды на уровне следующих концентраций  [c.312]

    Из графиков на рис 3 4 и рис.3, 5 видно, что теплота и этропия активации течения для всех исследованных нефтей убывает, причем наиболее заметно в области низких температур (ниже температуры кристаллизации парафина). Это связано, очевидно, как с самим механизмом течения, который представляет собой одновременно происход5[щие процессы разрушения структуры в нефти и ориентации элементов разрушенных структур, так и с природой самой структуры, которая в зависимости от условий может быть образована парафинами или асфальтенами. По мере увеличения температуры под влиянием [c.39]

    Механизм активации катализатора добавками серы еще неясетг Количество серы, необходимое для поддержания или увеличения активностп катализатора, иногда зависит от стабильности сульфида тяжелого металла в катализаторе. Так, для еуль-(1)нда молибдена, по-виднмому, необходимы более высокие концентрации сероводорода, чем для сульфида вольфрама. Однако активность некоторых катализаторов, которые не содержат элементов, образующих в условиях реакции сульфиды, также увеличивается при добавлении к сырью соединений серы. Во многих случаях сероводород снижает чувствительность катализатора к соедннетшям азота и тем самым приводит к увеличению активности катализатора. Объяснить все этн эффекты в настоящее время весьма трудно, поскольку отсутствуют достаточные дачные для чистых соединений. [c.279]

    Поэтому к вопросу о равновесности уместно подходить с иных позиций. Если проанализировать обычную диаграмму энергия Гиббса — температура (см. рис. П. 1, б) вдоль линии, соответствую щей жидкой фазе, в равновесном — в терминах термокинетики — варианте, т. е. при очень медленном изменении температуры, каждой точке на линии О — Т в жидкой области должна соответствовать своя равновесная структура, определяемая как уровнем ближнего порядка (мерой которого может служить и величина свободного объема), так и подвижностью кинетических элементов — в данном случае атомов или молекул (мерой которой может служить вязкость или связанный с ней через энергию активации коэффициент самодиффузии). [c.89]


Смотреть страницы где упоминается термин Элемент активации: [c.123]    [c.161]    [c.227]    [c.166]    [c.593]    [c.91]    [c.542]    [c.209]    [c.155]    [c.241]    [c.391]    [c.58]    [c.76]    [c.60]    [c.165]   
Научные основы химической технологии (1970) -- [ c.239 ]




ПОИСК







© 2025 chem21.info Реклама на сайте