Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окисление сталей и чугунов

    При определении фосфора в чугунах и сталях после растворения навески в НЫОз и окислении образовавшейся фосфористой кислоты до фосфорной фосфат-ион осаждают в виде (ЫН4)зР04- 12МоОз. Отфильтровав осадок, его растворяют в аммиаке, после чего осаждают молибденовую кислоту в виде РЬМо04, по массе которого и вычисляют содержание фосфора. Вычислить фактор пересчета для этого определения. [c.191]


    Железо н сталь, чугун окисленный 58 6 1 6 2 64 66 7 5  [c.332]

    Для определения марганца используют ряд методов. Из них большее распространение получили методы, основанные на окислении марганца (II) в марганец (VII) (марганцовую кислоту). Эти методы обычно применяют для определения марганца в сталях, чугунах, горных породах. [c.167]

    Окисление сталей и чугунов [c.37]

    Равновесным является положение металла в окисленном состоянии, что подтверждается природой например, железная руда (оксиды железа) не претерпевает существенных изменений в течение многих сотен и тысяч лет, т.е. находится в термодинамическом равновесии с окружающей средой (участок 1). В процессе переработки руды в железо (сталь, чугун) расходуется большое количество энергии, значительная часть которой идет на увеличение внутренней энергии железа (участок II), шарик стал обладать повышенной потенциальной [c.5]

    Окисление сталей и чугунов протекает несколько иначе, чем окисление технически чистого железа, так как образованию окалины сопутствует процесс обезуглероживания, интенсивность которого с ростом температуры возрастает. [c.17]

    Железо и сталь, чугун окисленный 58 61 62 6 4 66 75  [c.332]

    Введение молибдена в сталь повышает ее прочность в результате измельчения зерна, а также за счет выделения мелкодисперсных частиц карбидов молибдена и сложных карбидов. Помимо образования карбидов, молибден входит в твердый раствор на основе железа, что также повышает прочность и понижает хрупкость стали. Кроме того, молибден повышает прочность стали при длительных нагрузках. В силу способности понижать окисление сплавов при высоких температурах, т. е. повышать жаростойкость, молибден вводят в соответствующие стали, чугуны и сплавы с цветными металлами. Он также повышает способность стали к цементации. Молибден вводят в магнитные стали и сплавы для увеличения магнитной проницаемости. [c.538]

    При нагреве в воздухе или продуктах горения топлива углеродистые стали и чугуны подвергаются окислению, особенно быстрому при температурах выше 600° С, и покрываются продуктами газовой коррозии — окалиной. Окалина имеет сложное строе- [c.138]

    Силицированием называется процесс насыщения поверхности стали кремнием путем диффузии его в железо при высоких температурах. Силицирование применяется для повыщения химической стойкости простой углеродистой стали, чугуна. Известно, что добавки кремния к простой углеродистой стали (в пределах растворимости кремния в твердом состоянии в железе) вызывают повышение сопротивления стали окислению при высоких температурах (до 800—850°), а также повышение коррозионной стойкости против воздействия ряда кислот (азотной, соляной и т. п.). [c.197]


    Башенные системы отличаются от камерных применяемой аппаратурой (башни вместо камер) и некоторыми особенностями течения реакции окисления сернистого ангидрида окислами азота. Эти особенности будут рассмотрены ниже. При строительстве башенных систем можно использовать черные металлы (стали, чугуны) вместо дорогостоящего и дефицитного свинца. [c.10]

    Повышение содержания в газовой среде обезуглероживающих компонентов увеличивает глубину обезуглероживания стали и чугуна. Повышение температуры и времени выдержки увеличивает глубину истинного обезуглероживания, а глубина видимого обезуглероживания определяется соотношением скоростей процессов обезуглероживания и окисления стали или чугуна. [c.61]

    Реактив предложен для выявления структуры углеродистых н низколегированных сталей, чугунов, алюминия, меди и медных сплавов и может быть использован также для изучения структуры после пластической деформации и для удаления продуктов коррозии после окисления [95]. [c.48]

    Мартеновские печи являются сталенлавильпыми агрегатами в них из шихты, состоящей в основном из чугуна, стального лома (скрапа), руды и флюсов, выплавляется сталь. Чугун доставляется из доменного цеха в жидком виде или при работе мартеновских печей на холодной завалке употребляется в чушках. Более производительной является выплавка стали в конвертерах, в которых жидкий чугун продувается технически чистым кислородом, при этом углерод в значительном количестве переходит в газ, а марганец, кремний, фосфор и сера — в шлаки. При окислении примесей выделяется так мнбго тепла, что его достаточно для разогрева ванны и покрытия потерь тепла без затраты добавочного топлива. Отходящие газы конвертеров горючи (90% СО и 10% СОг), имеют очень высокую температуру (1 500—1 800 °С) и сильно загрязнены технологическим уносом до 125—220 г/ж Работа конвертеров невозможна без улавливания газов, их охлаждения в котлах-охладителях и очистки. [c.4]

    Для определения марганца используют ряд методов. Из них наиболее широко известен метод, основанный на окислении марганца (П) до марганцовой кислоты (НМПО4). Этот метод применяют для определения марганца в сталях, чугунах и горных погодах. [c.494]

    Железо, титан, цирконий и многие сплавы на их основе способны пассивироваться в концентрированной азотной кислоте, но при концеитрации кислоты >95% нержавеющие стали иногда склонны к иереиассивации, ирн которой разрушается за-п итпая пленка и окисление сталей ускоряется. Коррозионная активность кислоты возрастает ири наличии в растворе ионов хлора особенно важно иметь это в виду для материалов, пассивирующихся в чистой азотной кислоте. Алюминий рекомендуется для концентраций кислоты <1% и >80%. Титан и цирконий ие рекомендуются для дымящей азотной кислоты, о этом случае возможно образование пирофорных продуктов реакции, чувствительных к удару, т. е. реакция может протекать со взрывом. Медь и свинец нестойки в растворах азотной кислоты, так как в результате нх реакции с кислотой образуются легкорастворимые вещества. Для эксплуатации при нормальной температуре рекомендуется аппаратура из хромистого чугуна. Необходнмо учитывать возможность [c.807]

    При определении марганца в сталях, чугунах,-горных породах широко используют методы, оспованные на окислении Мп(И) в марганцовую кислоту НМПО4. [c.59]

    Применение скандия, РЗЭ и их соединений. Металлический скандий применяется как фильтр нейтронов в ядерной технике и как легирующий металл в черной и цветной металлургии. Добавка 1% иттрия к нержавеющим сталям повышает температуру их окисления до 1200—1300 °С. Кроме того, применительно к магниевым и алюминиевым сплавам иттрий является хорошим упроч-иителем. Лантаноиды, несмотря на сравнительно высокую стоимость, нашли применение в атомной технике, электронике, электро- и радиотехнике, а также в черной и цветной металлургии. В атомной технике применяются лантаноиды с большими сечениями захвата нейтронов (гадолиний, самарий, европий). Церий и мишметалл входят в состав геттеров. Кроме того, церий широко применяется для легирования сталей, чугуна, алюминиевых, магниевых и других сплавов. [c.179]

    Конверторные процессы получения стали. Получение стали конверторным способом (возникло во 2-й половине XIX в.) усилило рост производства литой стали. Процесс проводится в коН верторах емкостью от 0,5 до 60 т путем окисления жидкого чугуна кислородом сжатого воздуха — атмосферного или обогащен-ного кислородом, а также паро-кислородной смесью. В зависимости от того, кислая или основная внутренняя футеровка, конвертора, различают бессемеровский и томасовский процессы. [c.182]

    Титрование Мп(П) раствором перманганата калия до Мп(П1) наиболее удобно проводить при потенциале платинового электрода -f-0,4 в (отн. МИЭ) [154, 594, 595, 661, 1022]. При этом полностью исключается как анодный ток окисления Mn(II), так и катодный ток, образующ ийся при титровании Мл(П1). Кривые титрования получаются отчетливыми. Ионы Fe(III), Al(III), Ti(IV), a(II), Mg(II), Ni(II), o(II) в присутствии пирофосфата не мешают титрованию, так как образуют с пирофосфатом натрия комплексные соединения, не окисляюш иеся КМПО4 при указанном значении потенциала. Сг(П1) дает комплексное соединение с пирофосфатом натрия, состав и прочность которого изменяются во времени и поэтому в его присутствии необходимо выдержать раствор 15— 20 мин. перед титрованием. Восстановители должны отсутствовать. Обычно титрование проводят с одним или двумя платиновыми индикаторными электродами. Использование амперометрической установки с двумя индикаторными электродами обеспечивает резкое возрастание величины тока вблизи точки эквивалентности, что позволяет заканчивать определение без построения графиков. Амперометрическое титрование Ми(II) по катодной волне перманганата с применением медного и графитового электродов дает удовлетворительные результаты. Недостаток графитового электрода — довольно медленное установление величины тока. Медные и молибденовые электроды не пригодны для проведения анодных процессов на фоне раствора пирофосфата натрия. Ниобий-танта-ловый электрод не может служить индикаторным электродом при амперометрическом титровании перманганатом [153]. Были применены серебряные и другие электроды [1006, 1489]. Титрованием Мп(П) перманганатом калия до Мп(1П) определяют марганец в стали, чугуне [661, 1084, 1489] и цинковых электролитах [154]. [c.50]


    Описанный метод применяют для определения марганца в сталях, чугунах, рудах [22, 39, 50, 186, 407, 408, 633, 669, 1018, 1085, 1101, 1179, 1506], в горных породах [754], различных сплавах [137, 1057, 1487], мартеновских шлаках [136, 207, 686, 1101], соединениях тория [245], никеле [145, 364], алюлшнии [614], биологических материалах [ИЗО], воде [542, 1018], почвах [1204] и др. При определении марганца в едких щелочах предварительно экстрагируют диэтилдитиокарбаминатный комплекс Мп(П), а затем разрушают его и окисляют Мп(П) до Mn(VII) персульфатом аммония. Чувствительность метода 1-10 % [379]. Простой метод определения марганца в серебре высокой чистоты состоит в осаждении серебра в виде Ag l и определении Мп в фильтрате с чувствительностью 10 —10 % и относительной ошибкой 2—7% [1079]. Определение марганца в уране основано на отделении последнего экстракцией смесью ТБФ и G I4 и измерении оптической плотности водного раствора при Ъ2Ъ нм после окисления Мп(П)до Mn(VII). Метод позволяет определять до 2 мкг Мп/з при навеске урана 2 г [1077]. Определение больших количеств марганца производят дифференциальным фотометрическим методом [50]. [c.55]

    В 1856 г. английский инженер Г. Бессемер изобрел конвертерный способ получения стали путем окисления расплавленного чугуна воздушным дутьем, подаваемым снизу под слой расплавленного чугуна. Конвертерный процесс не требует затраты топлива ввиду сильной экзо-термичности реакции выгорания углерода и других примесей, имеющихся в чугуне. Основными недостатками метода являются низкое качество стали из-за плохого удаления из нее вредных примесей — фосфора и серы, что предъявляет высокие требования к качеству исходного чугуна. Для переработки высокофосфористых чугунов английский металлург У. Томас в 1878 г. предложил футеровать стенки конвертера доломитом СаСОз МеСОз, что позволило добавить в конвертер известь и тем самым резко снизить в стали содержание фосфора и серы. Тома-совский способ был весьма распространен в конце XIX в., но после изобретения мартеновского способа полностью был вытеснен последним. После разработки в СССР в 30-х годах XX в. кислородно-конвертерного способа, заключающегося в подаче в конвертер чистого кислорода над слоем металла и возможности добавления в него флюсов и лома, качество стали повысилось, появилось больше возможностей для изменения ее состава и свойств. В настоящее время конвертерным способом получается около половины всей производимой в мире стали. [c.47]

    Для определения марганца в сталях, чугунах, горных породах наиболее широко применяют методы, основанные на окислении Мп (И) в марганцовую кислоту НМПО4. [c.129]

    Конвертор представляет собой грушевидный сосуд из листовой стали, зафутероваиный изнутри огнеупорным материалом. Воздух из воздухопровода в конвертор поступает снизу через полую цапфу, а кислород — сверху через водоохлаждаемую фурму. Жидкий чугун, доставляемый в ковшах, заливают в конвертор через горловину, для чего конвертор наклоняют в горизонтальное положение. Затем конвертор ставят в вертикальное положение и начинают продубать через него воздух или, в кислородных конверторах, опускают фурму и начинают подавать кислород. По окончании процесса подачу воздуха или кислорода прекращают, из кислородных конверторов вытаскивают форму, конвертор поворачивают и выливают готовую сталь в ковш. В связи с интенсивным перемешиванием процесс длится всего 10—25 мин, при этом в результате реакций окисления примесей чугуна выделяется значительное количество тепла, благодаря чему чугун (в дальнейшем сталь) и шлак сохраняются в жидком состоянии. [c.188]

    Сталь (чугун) растворяют в азотной кислоте. Растворение в соляной или серной кислотах недопустимо, так как влечет значительную потерю мышьяка (в виде АзНз). Однако осалдать сероводородом в азотнокислой среде нельзя, так как сероводород окисляется до свободной серы. Поэтому и-осле растворения стали в азотной кислоте жидкость выпаривают с серной кислотой или осаждают ароенат железа, нейтрализуя раствор содой. Осадок растворяют в соляной или серной кислотах и осаждают мышьяк сероводородом. Сульфид мышьяка растворяют в соде и обрабатывают бромом для окисления мышьяка до пятивалентного. Затем получают мышьяково-молибденовый комплекс, который восстанавливают до молибденовой сини и измеряют интенсивность окраски. [c.277]

    Разработан ряд титриметрических методов определения ванадия в сталях, чугунах и других материалах, основанных на реакции окисления ионов Ре в кислых растворах ионами V . Для установления точки эквивалентности применяют N-фенил-антраниловую кислоту. На практике большое распространение получили методы, в которых точку эквивалентности устанавливают потенциометрически или амперометрически (по появлению тока окисления ионов Fe2+ на платиновом вращающемся аноде). [c.174]

    Существует несколько способов переработки чугуна в сталь. Они основаны на окислении содержащегося в чугуне углерода и примесей и 0тлеле 1ии образующихся оксидов в газовую фазу пли в шлак. В СССР основная масса чугуна перерабатывается в сталь мартеновским способом. [c.681]

    Органические кислоты в небольшом количестве всегда присутствуют в бензине. Основную массу кислых соединений составляют нафтеновые кислоты К—СООН и фенолы (чаще СеНьОН). Их коррозионная активность гораздо ниже, чем у минеральных. Наиболее энергично они взаимодействуют с цветными металла.ми (свкиец, цинк), на черные (сталь, чугун) действуют очень слабо. С повышением температуры активность органических кислот возрастает. Наиболее коррозионно-активны низкомолекулярные органические кислоты (особенно в присутствии воды). С увеличением молекулярной массы активность уменьшается. Прп длительном хранении бензина, особенно с низким индукционным периодом, содержание кислых органических соединений увеличивается в результате окисления топлива, и коррозийность возрастает. [c.31]

    Последующей переработкой чугуна (бессемерованием, мартеновским способом, электронлавкой в вакууме и др.) получают сталь и техническое железо. Передел чугуна в сталь сводится к удалению избыточного углерода и вредных примесей (серы, фосфора) путем их окисления (выжигания) при плавке. Железо в чистом виде получают электролизом растворов его солей, термическим разложением ряда соединений. [c.584]

    Сталь и чугун, окисленные при 600° С. ... Хромоппкелевая сталь после нагрева до 530 С Хромоникелевая сталь, окпслепиая после долгого использования в печи. ........ [c.62]

    Детали гидромеханических коробок передач выполняют не только из чериых металлов (стали и чугуна), но и из цветных, таких как свинец, алюминий, медь, олово. Цветные металлы особенно сильно подвержены коррозии. Накопление в масле в результате окисления высокомолекулярных органических кислот и других кислых веществ, обводнение его во время работы по тем или иным причинам способствуют интенсификации процессов коррозии и требуют принятия должных мер по снижению коррозионной агрессивности масел, например введения в них специальных присадок. [c.441]


Смотреть страницы где упоминается термин Окисление сталей и чугунов: [c.52]    [c.140]    [c.807]    [c.519]    [c.592]    [c.721]    [c.976]    [c.186]    [c.143]    [c.27]    [c.445]    [c.556]    [c.17]   
Смотреть главы в:

Техника антикоррозионной защиты оборудования и сооружений -> Окисление сталей и чугунов

Химическое сопротивление материалов и современные проблемы защиты от коррозии -> Окисление сталей и чугунов




ПОИСК





Смотрите так же термины и статьи:

Чугунные

Чугуны

сталь на чугун



© 2025 chem21.info Реклама на сайте