Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электролиз растворов Nal получаемые продукты

    В 40-х гг. XIX в. Кольбе электролизом растворов солей алифатических карбоновых кислот получил продукты, димеризации углеводородных радикалов (синтез Кольбе)  [c.253]

    Для электролиза раствора хлорида калия используют те же самые электролизеры, что и для электролиза хлорида натрия. Раствор, используемый для электролиза, содержит хлорида калия 345—370 кг/м , ионов кальция и магния в сумме не более 7-10 3 кг/м (больше, чем в растворе хлорида натрия из-за более высокой растворимости солей кальция в растворе КС1). В электролизерах получают электрощелока, содержащие 140— 175 кг/м гидроксида калия и до 0,35 кг/м хлората калия КСЮз. Хлор и водород по составу близки к газам, получаемым при электролизе раствора хлорида натрия. Выход по току гидроксида калия составляет 94,5—95%. Напряжение электролиза несколько ниже из-за более высокой электропроводности раствора хлорида калия. Так как молекулярная масса гидроксида калия больше, чем у гидроксида натрия, то соответственно ниже расход электроэнергии на тонну продукта. [c.82]


    Прямой электролиз растворов соляной кислоты связан с относительно большим расходом электроэнергии. Поскольку в результате электролиза получается лишь один целевой продукт — хлор, а на катоде выделяется малоценный водород, то все затраты производства целиком относят на себестоимость хлора. Поэтому прямой электролиз соляной кислоты не всегда оказывается экономически выгодным. [c.421]

    Электрохимический метод позволяет получать наряду с основным продуктом производства ценные побочные продукты, применять более дешевое сырье и полнее его использовать. Так, при электролизе растворов хлористого натрия выделяются одновременно хлор, едкий натр и водород. При электрорафинировании металлов отходом является шлам, содержащий благородные металлы зо гото и серебро (при рафинировании меди), платину и палладий (при рафинировании никеля). Стоимость получаемых благородных металлов полностью окупает расходы по рафинированию. [c.11]

    Электролиз водного раствора хлорида натрия — одно из важнейших крупнотоннажных производств, основанных на процессе электролиза водных растворов электролитов. Он позволяет на основе одного сырья получить одновременно три продукта гидроксид натрия, хлор и водород. Технологический процесс состоит из трех стадий подготовки сырья к электролизу раствора хлорида натрия, очистки и переработки продуктов электролиза. [c.337]

    Какие продукты получаются при электролизе раствора серной кислоты  [c.76]

    Какие продукты могут быть получены при электролизе раствора КМОз, если анодное и катодное пространства а) разделены пористой перегородкой, б) не разделены и раствор перемешивается  [c.271]

    Ваш ответ не вполне правилен. Конечно, при электролизе воды получается водород. Однако в промышленности водород получают электролизом рассола (водного раствора поваренной соли). В этом процессе образуются и другие важные продукты . ..... и. ... [c.52]

    Водород можно получать в лабораторных условиях путем электролиза воды, но этот метод не слишком удобен, и водород таким путем получается слишком медленно. Электролиз редко применяют для получения водорода в лабораторных условиях. Однако электролиз используется для получения водорода в промышленных условиях, причем этот процесс позволяет также получать некоторые дополнительные продукты. При электролизе раствора поваренной соли образуются гидроксид натрия, хлор и водород. [c.70]


    В промышленных условиях водород получают электролизом растворов хлорида натрия, в которых водород образуется как побочный продукт. Другой метод, который может использоваться для получения водорода, заключается в пропускании пара над раскаленным коксом с последующим разделением полученной смеси оксида углерода и водорода. Водород получают также при высокотемпературном разложении (пиролизе) метана. [c.425]

    Из наиболее электроотрицательных элементов хлор и фтор получают в виде простых веществ электролизом фтор — электролизом расплавов фторидов (получая одновременно соответствующий металл), хлор — электролизом растворов хлоридов натрия или калия, а также как побочный продукт при получении наиболее электроположительных металлов электролизом расплавов их хлоридов. Бром и иод обычно получают, действуя на содержащее их сырье хлором, например, обрабатывая им золу морских водорослей для извлечения из нее иода. [c.175]

    При нормальных условиях хлор — газ желто-зеленого цвета. Получают его электролизом раствора поваренной соли. При прохождении постоянного тока через раствор хлорида натрия на аноде выделяется хлор, а на катоде образуется амальгама натрия или едкий натр. Устанавливая между анодом и катодом диафрагму, обеспечивают разделение продуктов электролиза. [c.262]

    Электролизом расплавов получают такие металлы, как алюминий, натрий, кальций, магний и их сплавы. Он отличается от электролиза растворов большей электропроводностью электролитов и меньшим выходом по току. Это обусловлено испарением продуктов электролиза, их растворением, последующим окислением на аноде и поверхности электролита. Выход по току понижается также из-за анодного эффекта — увеличения сопротивления ванны в результате образования газового мешка вокруг анода. Для повышения выхода по току необходимо вести процесс при возможно низкой температуре, подбирая соответствующие эвтектические смеси солей, при уменьшении общего количества электролита и увеличении электродной плотности тока. [c.62]

    Электролизом называется разложение электролитов постоянным электрическим током, которое сопровождается образованием новых веществ. На электродах происходят реакции окисления— восстановления анионы на аноде отдают электроны и окисляются, а катионы восстанавливаются на катоде. Если анод растворим в электролите под действием тока, то чаще всего анионы на нем не разряжаются, а электроНейтральность раствора (или расплава) поддерживается образованием катионов из материала анода. Одно из преимуществ электролиза перед химическим восстановлением заключается в том, что при этом продукты восстановления не загрязняются остатками металла-восстановителя и примесями, первоначально присутствующими в нем. Кроме того, при электролизе возможна очистка от многих примесей исходного сырья. Изменяя условия электролиза, можно получать катодный осадок с некоторыми заданными физическими свойствами (крупностью кристаллической структуры и т.п.). В промышленных масштабах осуществляют электролиз как водных растворов, так и расплавов. Однако для получения редких металлов электролиз водных растворов используют редко. [c.256]

    Марганец получают либо электролизом раствора MnS04, либо восстановлением из его оксидов кремнием в электрических печах. Второй (силикотермический) метод более экономичен, но дает менее чистый продукт. При электролитическом методе руду восстанавливают до соединений марганца со степенью окисленности - -2, а затем растворяют в смеси серной кислоты с сульфатом аммония. Получающийся раствор подвергают электролизу. Снятые с катодов осадки металла переплавляют в слитки. [c.662]

    Потребность в хлоре сейчас возросла настолько, что ее нельзя удовлетворить только путем электролиза растворов поваренной соли. Кроме того, при этом методе получается едкий натрий, потребность в котором растет медленнее, чем в хлоре. В настоящее время возникают методы производства хлора, не связанные с производством каустической соды. К ним относится электролиз хлористых солей, дающих в качестве второго продукта металлы. Таким путем возникла т. н. хлорная металлургия. [c.204]

    Промышленности его получают нейтрализацией плавиковой кислоты карбонатом Н. и гидроксидом алюминия карбонизацией смеси раствора фторида Н. и алюмината Н. Гидрокарбонат Н. получают насыщением оксидом углерода(IV) растворов карбоната Н. при 75 С. Гидроксид Н. получают электролизом растворов хлорида Н. при взаимодействии горячего раствора карбоната Н. с гидроксидом кальция получается 10—12 % раствор гидроксида Н. Иодид Н.— продукт обменной реакции РезЬ и карбоната Н. Карбонат Н. получается при взаимодействии раствора хлорида Н. с аммиаком и оксидом углерода (IV) с последующим прокаливанием выпавшего осадка гидрокарбоната Н. при прокаливании сульфата И. с углем и карбонатом кальция (известняком). Декагидрат карбоната Н. кристаллизуется из водных растворов при температуре ниже 32 °С. Нитрит Н. получают при поглощении оксидов азота водными щелочными растворами с последующим их упариванием. Ортофосфат Н. получается при нейтрализации ортофосфорной кислоты гидроксидом Н. Перборат Н. образуется при обработке метабората Н. пероксидом водорода или орто-борной кислоты пероксидом Н. Сульфат Н. составляет основу минерала мирабилита (глауберовой соли). Безводный сульфат [c.33]


    Каустическая сода — один из важнейших видов продукции химической промышленности. Выпуск каустической соды во всем мире увеличивается, что связано с ростом ее потребления в производствах искусственных волокон, бумаги и др. В промышленности каустическую соду получают электролизом раствора поваренной соли с ртутным катодом или диафрагмой. В США, например, /з продукции получают диафрагменным способом. В нашей стране наибольшее применение нашел метод электролиза с ртутным катодом, так как получаемый продукт отличается высокой степенью чистоты. Кроме того, данный метод более экономичен в сравнении с диафрагменным. Существенным недостатком метода является образование весьма токсичных ртутьсодержащих отходов. Такие же отходы образуются и при производстве ацетальдегида. Органические соединения ртути весьма опасны, так как являются протоплазменными ядами. [c.206]

    Наибольшее практическое значение имеет едкий натр. Его мировое производство составляет миллионы тонн в год. Едкий натр получают в основном электролизом раствора Na l. При этом при меняют железные катоды и аноды из искусственного графита для предотвращения смешивания продуктов электролиза катодное и анодное пространства разделяют асбестовой диафрагмой. Вместр графитовых анодов используют также титановые, покрытый JOHKHM слоем смеси оксидов рутения и титана у этих анодоа [c.303]

    В данном разделе речь пойдет о процессах галогенирования, под которыми подразумеваются все реакции введения в органические соединения атомов галогенов. Чаще всего это хлор из-за доступности и дешевизны, который получают электролизом раствора хлорида натрия. Хлорирование углеводородов и других органических соединений является очень важньш направлением органического синтеза, поскольку этим методом производят самые различные продукты, находящие широкое применение в народном хозяйстве. Это полупродукты для органического синтеза (хлористый метил, этил, аллил, хлорбензол, хлоргидрины, из которых получают XJюpoлeфины, спирты, окиси олефинов и т.д.) мономеры для получения смол, пластмасс, волокон (винилхлорид, хлоропрен, 1,2-дихлорэтан, монохлортрифторэтилен, тетрафторэтилен и т.д.) различные пестициды, хладоагенты, растворители, медицинские препараты и т.д. [c.75]

    Из щелочей наибольшее практическое значение имеет едкий натр. Его получают в основном электролизом раствора Na I. При этом применяют железные катоды и аноды из графита. Вместо графитовых анодов используют также титановые, покрытые тонким слоем смеси оксидов рутения и титана у этих анодов значительно больший срок службы. Для предотвращения смешивания продуктов электролиза катодное и анодное пространства разделяют асбестовой диафрагмой. При электролизе происходит следующие процессы  [c.323]

    Большие количества НС1 получают в технике как побочный продукт хлорирования органических соединений (по схеме RH + СЬ = ==R 14-H 1, где R—органический радикал). Однако для получения чистой соляной кислоты основное значение имеет прямой синтез. Исходным сырьем служат при этом хлор и водород, одновременно выделяющиеся при электролизе раствора Na I. Спокойное протекание процесса обеспечивается смешиванием обоих газов лишь в момент взаимодействия. [c.250]

    Электролиз растворов Na l (K l) является одним из основных процессов химической промышленности, так как ведет к одновременному получению двух весьма важных для техники веществ — едкой щелочи и свободного хлора (см. VII 2). В качестве побочного продукта получается также водород. [c.411]

    Важнейшим применением электролиза является извлечение с его помощью ряда химических элементов из природного сырья. Например, хлор, водород и натрий получают путем электролиза соляных растворов или расплавленного Na l. Почти весь вырабатываемый в настоящее время алюминий — продукт электролиза раствора AljOj в расплаве криолита. Расплавленный Mg l2 путем электролиза превращается в магний и хлор. [c.296]

    В отличие от вольтамперометрии (см. разд. 7.3) электролиз можно провести в усл( иях, когда состав раствора меняется вследствие количественного эжктро-окисления или электровосстановления компонентов раствора. В таких случаях электролиз проводят при большом отношении рабочей поверхности электрода А к объему раствора V и в условиях конвективно-диффузионного контроля массопереноса. Электрод с большой поверхностью дает возможность пропускать относительно высокие токи и позволяет быстро получить продукт электроокисления или электровосстановления. Основные принципы, управляющие электродными реакциями при объемном э гектролизе, те же, что и в условиях микроалектролиза (вольтамперометрия). [c.383]

    В опытном электролизере, разделенном керамической диафрагмой на анодную и катодную части, с применением пластинчатых анодов из графита, покрытых эпоксидной смолой, и ртутного катода, получали продукт содержащий в среднем 99,23% КзРе(СЫ)б, 0,35% К4ре(СН)б и 0,42% Ре(ОН)з. При плотности тока 3,5—4,3 а/сж , напряжении на ванне 4,5—5,0 в выход по току составил 96,5—98,0%. Электролиз проводят при 50° с циркуляцией маточного раствора, получаемого после выделения из анолита охлаждением до 15° кристаллов КзРе(СЫ)б- К циркулирующему раствору добавляют железистосинеродистый калий до первоначального состава. [c.478]

    В 1878 г. Вертело сделал открытие, что электролизом растворов серной кислоты можно получать нероксодисерную кислоту, которая легко подвергается гидролизу в растворе с образованием перекиси водорода и серной кислоты. В 1885 г. Анрио показал, что перекись водорода можно выпарить из гидролизованного раствора, если поддерживать достаточно низкую температуру при работе под уменьшенным давлением. Эти открытия привели к тому, что в 1909 г. было начато промышленное производство перекиси водорода электрохимическими методами [1], которые позволяли получать сравнительно чистую и, следовательно, весьма устойчивую перекись водорода значительно более высокой концентрации, чем раньше. Эти методы почти полностью вытеснили способ производства из перекиси бария, который в настоящее время применяется в сравнительно небольшом масштабе лишь там, где имеется на рынке возможность сбыта получающегося в качестве побочного продукта сернокислого бария. Е) настоящее время перекись водорода получают главным образом электрохимическими методами через пероксодисульфат, однако в США недавно начато промышленное производство перекиси водорода, основанное на самоокислении органических веществ, а некоторые другие методы изучены с точки зрения потенциальной возможности промышленного применения и доведены по меньшей мере до стадии опытной установки. [c.34]

    Основными потребителями ртути являются электротехническая промышленность (производство жидких контаков, выпрямителей и люминесцентных ламп) и металлургия, где используют ее свойство растворять металлы с образованием амальгамы. Химическая активность металлов, растворенных в ртути, мала, и поэтому таким способом могут быть получены металлы, в чистом виде разлагающие воду. Например, при электролизе водного раствора КаС1 на ртутном катоде образуется амальгама натрия. Ее удаляют из электролизной ванны и обрабатывают водой. Таким образом, при электролизе удается получить два ценнейших продукта щелочь в катодном пространстве и хлор на аноде. Амальгамными способами извлекают Аи, С , Т1, Оа, 1п, РЗЭ, РЬ, Zn, 8Ь и другие металлы. Металлы отделяют от ртути отгонкой или электрохимическим способом с амальгамой в качестве анода. [c.179]

    Получение растворов кремневой кислоты, из которых выращивают золь, возможно различными путями. При этом в качестве сырья большей частью желательно использование растворов жид кого стекла — дешевого продукта, выпускаемого в большом количестве. Помимо описанного выше использования катионитов, удаление ионов натрия возможно путем электролиза растворов силикатов с ртутным катодом. Согласно Вейлу [13], электролиз концентрированных растворов провести не удается, необходимо их разбавление, следовательно, и последующая выпарка. Возможно также получить золи нейтрализацией растворов щелочных силикатов кислотами с последующим электродиализом. Образующиеся при этом кислоту и щелочь можно вновь употреблять для приготовления раствора силиката и его нейтрализации. [c.76]

    Изучая миграцию 1,2-фенила, Боннер и Манго [48] электролизом 3,3-дифенилпропионовой кислоты в растворе уксусная кислота— ацетат получили продукты (XXXIII) — (XXXVII), [c.144]

    Н. кроме того, он образуется в качестве отхода при получении фенола из бензолсульфокислоты методом щелочной плавки. Тиосульфат Н. получают растворением серы в горячем растворе сульфита Н. он образуется при взаимодействии гидросульфида И. с гидросульфитом Н. является побочным продуктом в производстве гидросульфита Н., при очистке промышленных газов от серы, при получении сернистых красителей и тиокарбанилида. Трифосфат Н. образуется при нагревании твердой смеси гидроортофосфата и дигидроортофосфата И. при молярном соотношении 2 1. Фторид Н. встречается в виде минерала вильомита, входит в состав криолита и других минералов его получают спеканием плавикового шпата (фторида кальция) с карбонатом Н. и оксидом кремния, разложением гексафторосиликата Н. карбонатом Н., растворением карбоната или гидроксида Н. в плавиковой кислоте. Хлорат Н. получают электролизом раствора хлорида Н., хлорированием растворов гидроксида, карбоната или гидрокарбоната Н. Хлорид Н. добывают в месторождениях минерала галита (каменной соли), из морской воды и воды соляных озер. Хлорит Н. получают обменной реакцией растворов хлорита бария и сульфата П., хлорита кальция и карбоната Н., хлорита цинка и ги 1,роксида [c.33]

    Гидроксид К. получают электролизом растворов хлорида К. Карбонат К. образуется при насыщении растворов гидроксида К. или суспензии карбоната магния в растворе хлорида К. оксидом углерода (IV) является побочным продуктом при переработке нефелина на глинозем. Сульфат К.-магния получают при переработке каинитолангбейнитовой руды. Нитрат К. — продукт обменной реакции между нитратом натрия и хлоридом К. либо же действия азотной кислоты или оксидов азота на карбонат или хлорид К. Ортофосфат К. получается нейтрализацией ортофосфорной кислоты гидроксидом К. Сульфат К. получают обменной реакцией между хлоридом К- и сульфатом магния или серной кислотой, а также при прокаливании лангбей-пита с углем. Основные пути получения фторида К. — взаимодействие карбоната К. со стехиометрическим количеством плавиковой кислоты, сплавление плавикового шпата с карбонатом или гидроксидом К., разложение гексафторосиликата К. при нагревании с карбонатом К. Хлорид К. извлекают из сильвинита и карналлита при обработке их водой или щелоком. [c.45]

    Первыми из таких сложных радикалов были радикал аммония, исследованный в 1808 г. Дэви и Берцелиусом, и радикал циан, описанный Гей-Люссаком в 1815 г. Квази-металлический характер радикала аммония был установлен Берцелиусом и Понтином , которые получили амальгаму аммония при электролизе раствора аммониевой соли с применением ртутного катода. Тот же самый продукт был получен Дэви при обработке аммониевой соли амальгамой натрия или калия. Гей-Люссак убедительно доказал, что радикал циан, N, ведет себя аналогично галоидам. При нагревании цианида ртути он получил газообразный циан (СМ)г . Не зная, что даже галогены образуют газообразные двухатомные молекулы, например СЬ, он считал газообразный циан свободным сложным радикалом. В результате развития органической химии в течение первой половины девятнадцатого века были описаны некоторые сложные радикалы. Считалось, что многие из них мол<но получить с помощью методов, аналогичных методам выделения металлов [c.9]

    К электрохимическим методам производства водорода относится прежде всего электролиз воды, а также электролиз водных растворов Na l для получения хлора и каустической соды одновременно в качестве побочного продукта электролиза ЫаС1 получается дешевый водород. Отметим, что в 1969 г. мировая хлорная промышленность (без СССР) выработала около 4,5 млрд. м водорода, который удалось использовать лишь в малой степени, главным образом из-за отдаленности его потребителей. [c.9]

    Из этого уравнения видно, что процесс имеет три стадии и протекает с образованием промежуточных продуктов. Интересно отметить, что, изменяя условия электролиза, можно получить иной конечный продукт реакции. Например, в растворе, содержащем большой избыток кислоты, росстановление нитробензола на платиновом катоде нрак- [c.37]

    Впервые чистый перхлорилфторид был получен в 1952 г. электролизом раствора перхлората натрия в жидком фтористом водороде Энгельбрехтом и Атцвангером [1]. Несколько раньше Воде и Клеспер [2] получили смесь РСЮз с РСЮг действием фтора на хлорат калия при низких температурах. В дальнейшем хлоратный метод синтеза РСЮз был усовершенствован и выход продукта достиг 60% [3—6]. [c.130]

    Зная величины электродных потенциалов и причины, от которых они зав1 сят, можно установить, какие продукты будут получены при электролизе раствора поваренной соли в зависимости от применяемых электродов и условий электролиза. [c.68]

    В текстильной и и,еллюлозной промышленности вместо растворов хлорной извести для беления часто применяют раствор хлорноватистокислого натрия, получаемого непосредственно на месте потребления электролизом раствора хлористого натрия. В сравнении с белящими растворами, приготовленными из хлорной извести, растворы хлорноватистокислого натрия дают более быструю отбелку благодаря наличию в них свободной хлорноватистой кислоты. Кроме того, при растворении хлорной извести всегда получается большое количество нерастворимого остатка, аппаратура требует периодической чистки, а растворы должны перед употреблением отстаиваться. Белящие растворы хлорноватистокислого натрия получаются совершенно свободными от осадков. Раствор хлорноватистокислого натрия мО Жет быть приготовлен и чисто химическим путем, а именно, насыщением щелочи газообразным хлором, но для этого вместо хлористого натрия необходимо расходовать более дорогие продукты — едкий натр и жидкий хлор или же сначала получать в хлорных ваннах хлор и электролитическую щелочь, а затем уже хлорноватистокислый натрий. Этот способ приготовления выгоден и целесообразен только при больших масштабах потребления хлорноватистокислого натрия. Во всех же других случаях проще и дешевле приготовление белящих растворов хлорноватистокислого натрия непосредственным электролизом хлористого натрия в специальных ваннах без диафрагмы. [c.362]

    Удаляемый раствор содержит много ценных продуктов, которые необходимо использовать. Наиболее совершенный способ утилизации удаляемого раствора заключается в следующем. Отбросный раствор подвергают обезмеживанию со свинцовыми анодами, как описано выше, и получают чистую катодную медь при выходе по току 85%. В растворе при этом содержание меди понижается с 40 до 10 г/л, содержание серной кислоты повь1-шается с 200 до 250 г/л. Этот раствор направляют во вторую стадию электролиза, также с нерастворимыми анодами, где при выходе по току 50% выделяют еще некоторое количество загрязненной меди, возвращаемой в анодные печи. Раствор же вновь подвергают электролизу и получают рыхлый осадок, содержащий в основном медь, мышьяк и сурьму. Этот осадок подвергают дальнейшей переработке. [c.449]

    Первая стадия (образование формамидина) легче протекает на металлах с низким перенапряжением водорода, в то время как для проведения второй стадии необходим более отрицательный потенциал катода, достигаемый на ртути, свинце и олове. Варьируя уело-в-ия электролиза, можно получить различные продукты. Так, на катоде из палладированной платины в слабокислой среде основным продуктом восстановления является формамиДйн (выход 52%), в растворе фосфатного буфера при pH 6,0—6,5 на губчатом никелевом катоде с выходом 80—90% образуется муравьиная кислота, а на ртути, олове и свинце в растворе сульфата аммония среди продуктов восстановления обнаружен метиламин (выход 7—9%). [c.175]


Смотреть страницы где упоминается термин Электролиз растворов Nal получаемые продукты: [c.430]    [c.145]    [c.145]    [c.190]    [c.226]    [c.1031]    [c.491]    [c.54]   
Технология содопродуктов (1972) -- [ c.193 , c.205 , c.227 ]




ПОИСК







© 2025 chem21.info Реклама на сайте