Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Процессы, зависящие от диффузии

    Влияние внутренней диффузии на ход контактного процесса наблюдается, когда скорость этого процесса зависит от таких факторов, как, например, величина зерна или структура массы катализатора, с которой связано значение эффективного коэффициента диффузии. Во внутридиффузионной области концентрации реагентов на внутренней поверхности зерна отличаются от их концентраций внутри зерна. [c.289]


    Измерение времени спин-спиновой релаксации. Время спин-спиновой релаксации Т измеряют методом спинового эха и его модификации. Метод состоит в том, что на спиновую систему воздействуют импульсной последовательностью 90°, т, 180° и в момент времени 2т наблюдают эхо-сигнал . Амплитуда сигнала—эхо зависит от T a, которое определяют из зависимости амплитуды эхо от т. Так же, как и при измерении Гь в последовательности 180°, т, 90° необходимо повторять импульсную последовательность с различными временами задержки т. Методика спин-эхо обладает ограниченными возможностями вследствие влияния процессов молекулярной диффузии. Перемещение ядер вследствие диффузии из одной части поля в другую приводит к уменьшению амплитуды эхо-сигнала. Амплитуда эхо-сигнала будет спадать не по простому экспоненциальному закону, что сказывается на измерении Т2. Существуют другие импульсные последовательности, которые позволяют понизить влияние диффузии на измерение Т2. Такой последовательностью является 90°, т, 180°, 2т, 180°, 2т.....Величины Ту [c.258]

    В фотохимии и фотолюминесценции растворов важную роль играют процессы, лимитируемые диффузией. Скорость этих процессов определяется исключительно скоростью, с которой реагенты могут диффундировать друг к другу. Бимолекулярная константа скорости процесса, контролируемого диффузией, зависит только от температуры и вязкости растворителя и определяется по уравнению [c.61]

    Метод вращающегося дискового электрода применяется также для выяснения других вопросов, связанных с механизмом электродных процессов. Так, при помощи этого метода может быть установлена природа медленной стадии электрохимического процесса. Действительно, если наиболее медленной стадией процесса является диффузия, то зависимость тока, измеренного на вращающемся дисковом электроде, от ]/ш должна быть прямолинейной и проходить через начало координат. Если скорость процесса определяется стадиями, не связанными с подводом вещества, т. е. контролируется кинетикой, то ток не зависит ОТ скорости вращения. Наконец, возможны условия, когда скорость процесса определяется и диффузией, и кинетикой. В таких системах при помощи вращающегося дискового электрода можно определить порядок реакции. Покажем это для реакции порядка р, для которой предельный кинетический ток при достаточном удалении [c.171]


    Если в результате недостаточно интенсивного перемешивания или недостаточной скорости диффузии реагентов к поверхности раздела фаз и продуктов реакции от поверхности раздела фаз в системе возникает градиент концентрации реагентов или продуктов, то скорость может оказаться и не пропорциональной 5/1/. Поэтому строго можно утверждать лишь, что скорость гетерогенного гомофазного процесса зависит от отношения величины поверхности раздела фаз, на которой проходит химическое превращение, к объему реакционной смеси, не оговаривая при этом вид зависимости. [c.36]

    Напомним, что время диффузии зависит от гидродинамических условий, так как оно является временем процесса нестационарной диффузии в пределах элементов поверхности жидкости время же реакции зависит только от кинетики рассматриваемой реакции и не является фактически достижимым временем реакции, а только временем, необходимым для нее. [c.21]

    Очень важным свойством решения уравнения (5.9), даже в его общей форме, является то, что отношение скоростей химической и физической абсорбции не зависит от времени диффузии. Это объясняется тем, что при увеличении скорости абсорбции, вследствие химической реакции, стадии, лимитирующие скорость процесса, меняются местами. При повышении скорости абсорбции за счет химической реакции стадией, лимитирующей скорость процесса, становится диффузия второго реагента из объема жидкости по направлению к границе раздела фаз, а не диффузия абсорбированного компонента от границы раздела в объем жидкости, или иными словами, первый процесс протекает при более высокой общей движущей силе. [c.62]

    Коэффициент диффузии. Гетерогенную реакцию можно разбить на несколько стадий 1) подход вещества к поверхности, 2) адсорбция, 3) реакция, 4) удаление продуктов. Любая из этих стадий может определять скорость реакции. Если лимитирующими является первая и четвертая стадии процесса, то скорость этого процесса зависит от диффузии поэтому кинетические процессы такого типа называются диффузионными процессами. Большое значение имеют диффузионные явления в таких процессах, как испарение жидкостей на воздухе или в среде других газов, растворение вещества в разных растворителях и т. п. Скорость этих процессов определяется скоростью диффузии. [c.422]

    В первом случае (который обычно имеет место при меньших температурах) наблюдаемая скорость процесса определяется величиной константы скорости /г, и в этом случае говорят, что она лимитируется химической реакцией. Во втором случае (который обычно имеет место при более высоких температурах) скорость зависит от параметров Д и х, и в этом случае говорят, что процесс лимитируется диффузией. [c.38]

    Иными словами, из уравнения (1.29) вытекают два предельных случая когда с, почти равна с и очень мала по сравнению с с. Образно можно сказать, что в первом случае суммарный процесс зависит от реакции на поверхности, а во втором случае — от поступления новых молекул к ней в результате диффузии. [c.38]

    Этот случай соответствует диффузионному режиму, когда скорость процесса зависит от коэффициента диффузии и толщины диффузионного слоя. [c.171]

    Скорость химического процесса зависит от скорости самой химической реакции и от скорости переноса массы (диффузии) между потоком и зоной реакции. Скорость реакции г измеряется изменением мольной концентрации одного из реагирующих веществ в единицу времени [c.684]

    Скорость гетерогенных химических реакций определяется количеством вещества, прореагировавшего на единице поверхности в единицу времени. В общем случае степень химического превращения при гетерогенном каталитическом процессе зависит не только от кинетической характеристики реакции, но и от процессов диффузии реагирующих веще гв из потока среды, протекающей между зернами катализатора, к внешней поверхности катализатора и в его поры и обратной диффузии продуктов реакции. [c.518]

    При выводе первого закона Фика предполагалось, что градиент концентрации не меняется е течением времени и не зависит от величины х. Первый закон Фика относится, таким образом, к процессу стационарной диффузии. Однако диффузия далеко не всегда протекает в условиях стационарности. Так, например, если в трубке, изображенной на рис. 6.1, слева на-.ходнтея твердое вещество, способное растворяться в жидкости, наполняюще трубку, то концентрация раствора будет изменяться и в пространстве и во времени. Прн этом концентрация, повыщаясь, достигает предельного значения, соответствующего растворимости вещества, а фронт насыщенного раствора передвигается слева направо. [c.146]


    Для обычных О, 5, N кислот реакции обмена протона с основаниями и иона гидроксила с кислотой не зависят от основности или кислотности реагентов и представляют собой исключительно быстрые процессы, контролируемые диффузией к 10 М" -с" ) [38]. Следует, однако, учесть, что каталитически активная группа претерпевает в реакции не только протонирование, но и депротонирование [37]  [c.273]

    Скорость переноса вещества зависит от многих факторов, важнейшие из них термодинамика процесса, коэффициент диффузии газовой фазы, форма сосуда, расстояние между горячей и холодной зонами, давление в реакторе. Необходимо также учитывать химические свойства примесей в очищаемом веществе — они не должны реагировать с газом-носителем. [c.67]

    Скорость суммарного процесса зависит от наиболее медленной (контролирующей) стадии. При умеренных температурах скорость травления определяется стадией химического взаимодействия, реже — процессом диффузии. При высоких температурах контролирующей стадией служит диффузия. Адсорбция и десорбция характеризуются малыми энергиями активации, протекают (сравнительно с другими этапами) быстро и поэтому лишь изредка лимитируют процесс. [c.101]

    При больших скоростях межфазового процесса, когда К > К", растворение лимитируется диффузией. Если К С К", растворение лимитируется межфазовым переходом. В. общем случае процесс зависит и от диффузионных, и от кинетических параметров (см. разд. 6.]). [c.219]

    Во всех случаях скорость взаимодействия в смеси твердых веществ зависит от размера их зерен, влияющего на величины К я К Это влияние в разных случаях неодинаково. Так, скорость процессов, лимитируемых диффузией и возгонкой, обратно пропорциональна квадрату начального размера (радиуса) частиц. В других случаях эта зависимость иная, но всегда с уменьшением размера частиц скорость процессов увеличивается. [c.349]

    Здесь Л и — величины, которые для разных процессов имеют различную физическую основу. Так, для процессов, лимитируемых химической реакцией, А — вероятностный фактор, а Е — кажущаяся энергия активации ( кажущаяся — поскольку процесс гетерогенный). Для процессов, лимитируемых диффузией, А зависит от расстояний между структурными элементами кристаллической решетки и от частоты их колебаний, а — от сил связи между ними. Для других лимитирующих стадий (возгонка, рекристаллизация и проч.) Л и зависят и от других факторов. [c.349]

    Растворение металла, идущее одновременно с образованием Нг из ионов Н в растворе, представляет собой случай, в котором анодный и катодный процессы протекают на одном и том же электроде. (Эти процессы называются полиэлектродными.) При этом как диффузия, так и химические процессы могут стать лимитирующими. Ранние работы по растворению амальгам натрия [7-6] в кислотах и основаниях указывают на то, что скорость реакции имеет первый порядок по Н" и приблизительно порядок /2 по концентрации натрия. Для кислых растворов эти факты объяснялись тем, что процесс лимитируется диффузией. Однако, как показали более поздние исследования [77—80], скорость растворения металлов в различных кислотах и растворителях пропорциональна концентрации недиссоциированной формы кислоты и относительные константы скорости в различных кислотах хорошо ложатся на прямую Бренстеда. По-видимому, в этом случае лимитирующей стадией является перенос протона от молекулы недиссоциированной кислоты к поверхности металла , причем реакция подвергается специфическому катализу кислотами. При растворении солей, таких, как Na l, в системах с перемешивающим устройством предполагается, что скорость реакции лимитируется диффузией, причем диффузия происходит через пограничный слой насыщенного раствора соли на поверхности кристаллов соли. Хотя подобная картина, по-видимому, является правильной для простых солей, таких, как галогеииды щелочных металлов, в случае солей металлов переменной валентности картина может быть другой. Так, например, безводный СгС1з очень медленно растворяется в воде, при этом скорость реакции не зависит от перемешивания. Было обнаружено, что небольшое количество Сг " в растворе оказывает огромное влияние на скорость реакции. Вероятно, в этом случае осуществляется перенос заряда между частицами Сг - в растворе и Сг в твердой фазе. Эти системы, по-видимому, заслуживают дальнейшего изучения. [c.557]

    Скорость электрохимического процесса зависит от э, д. с., т. е. от разности потенциалов между электродами, и существенно зависит от условий диффузии нонов. Аналогично, скорость отдельного электродного процесса должна зависеть от г отенциа-ла электрода. Определяющее влияние на скорость г>лектрод-ного процесса часто оказывает диффузия ионов. [c.607]

    Высокую удельную поверхность сырого катализатора трудно сохранить при прокаливании. Убыль свободной поверхностной энергии твердого тела термодинамически обусловлена. Твердые вещества с высокой удельной поверхностью всегда спекаются. Скорость этого процесса зависит от температуры, газовой среды, физических и химических свойств твердого вещества. Прп достаточно низких тедшературах скорость спекания незначительна. В за-впсимости от механизма спекания скорость нагрева по-разному влияет на катализатор. Если при прокаливании образуется жидкая фаза, то быстрый нагрев может предотвратить быстрое спекание. При медленном нагреве жидкость, покрывая частицы, способствует пх уплотнению. Медленный нагрев может понизить скорость спекания и в тех случаях, когда спекание определяется диффузией в твердой фазе. При низких температурах медленный нагрев позволяет за счет поверхностной диффузии снизить кривизну шеек между частицами, а это уменьшает движущую силу спекания при температурах, при которых лимитирующей стадией становится диффузия в объеме. [c.124]

    Высокую удельную поверхность сырого катализатора трудно сохранить при прокаливании. Убыль свободной поверхностной энергии твердого тела термодинамически обусловлена. Поэтому твердые вещества с высокой удельной поверхностью всегда спекаются. Скорость этого процесса зависит от температуры, газовой среды, физических и химических свойств твердого вещества. При достаточно низких температурах скорость спекания незначительна. Обычно спекание начинается с поверхностной диффузии и резко ускоряется, когда температура поверхностп достигает одной трети абсолютной температуры плавления. По мере повышения температуры, как правило, происходит смена лимитирующей стадии спекания — с диффузии по границам зерен на диффузию в объеме решетки. Взаимная ориентировка частиц и пористая структура сильно изменяются. При еще более высоких температурах большое значение приобретают процессы испарения и конденсацпи. [c.26]

    Кинетика ионного обмена. В результате химической реакции в растворе ионы перемещаются по направлению к ионообменной смоле или от нее. В этом случае общая скорость ионообмена будет зависеть от скоростей этапов диффузии через неподвижный слой зерен ионообменной смолы, а также скорости химической реакции на поверхности обмена. Так как ионные реакции протекают с очень большой скоростью, этапом, который определяет скорость процесса, является диффузия ионов через неподвижный спой. На межфазной поверхности системы жидкость — твердое тело практически мгновенно устанавливается равновесие. [c.339]

    Внешнедиффузионная скорость процесса зависит от гидродинамического режима (скорости потока), температуры, диаметра зерен адсорбонта, коэффициента диффузии в среде между зернами, вязкости и плотности среды. [c.251]

    С1ьирость процесса зависит JпmlT от скорости диффузии газа в жидкость, которая относительно медленно уменьшается с понижением температуры. [c.232]

    Если принять, что вследствие кинетического тормсжения электрохимических процессов скорость окисления металла нод адсорбционной пленкой влаги без анодного активатора несравнимо меньше скорости диффузии влаги через защитную пленку (т. е. не вся влага, проникающая через пленку, реализуется на кор])озионные процессы), то для достаточно большого времени (/ оо) толщина адсорбционной плен ги влагн на поверхности металла становится функцией активности воды в коррозионной среде (т. е, относительной влажности воздуха или активности воды в электролите). Другими словами, вследствие конечной величины влагопроницаемости полимерной пленки и относительно небольшой его толщины в результате диффузии влаги устанавливается адсорбционное равновесие поверхности металла с внешней средой. С этой точки зрения естественно было бы ожидать ощутимую скорость коррозии металла под защитными полимерными пленками. Однако в действительности, как показывают эксперименты, не наблюдается однозначной зависимости скорости окисления металла под пленкой от влалаюстп среды или коэффициента влагопроницаемости, так как лимитирующие стадии коррозионного процесса зависят как от внешних, т к и от внутренних факторов. [c.40]

    Использование вращающегося дискового электрода для изучения электрсхимическоЯ кинетики. Сопоставляя экспериментальные данные по кинетическим закономерностям электрохимических реакций с зависимостью и i,J от различных параметров (см. уравнения (4.61) и (4.62)1, можно установить природу лимитирующей стадии реакции. Действительно, если наиболее медленной стадией процесса является диффузия, то зависимость тока, измеренного на вращающемся дисковом электроде, от Уш должна быть прямолинейной и проходить через начало координат. Если скорость процесса определяется медленностью стадии разряда—ионизации, то ток не зависит от скорости вращения. В условиях смешанной кинетики наблюдается нелинейная зависимость тока от потенциала (рис. 4.22). В таких системах можно определить порядок реакции р. Действительно, измеряемый ток I = кс , а ток, определяемый стадией переноса электрона, = кс . В условиях станционарной диффузии с, = с,,(1 — / ,1) и тогда [c.247]

    Существование пределов давлений объясняется тем, что наряду с разветвлением цепей происходит и их обрыв. При большой вероятности обрывов реакция течет медленно и спокойно, как и при неразветвляющихся цепях. Это происходит при низких давлениях, так как диффузия активных частиц к стенкам идет без затруднений. С ростом давления вероятность обрывов цепей за счет соударений со стенками уменьшается и разветвление цепей увеличивается. Реакция протекает самоускоренно вплоть до воспламенения (при высоких температурах и давлениях — до взрыва). Переход совершается очень резко при прохождении через нижний предел. По достижении верхнего предела разветвление цепей снова затрудняется вследствие обрыва в объеме. Этот обрыв происходит в результате тройных столкновений или соударений с молекулами примесей, концентрация которых растет с давлением. Тогда наблюдаемая скорость процесса зависит от числа тройных соударений. Дальнейшее повышение давления постепенно увеличивает скорость реакции вплоть до наступления теплового взрыва. Сжатие имеет адиабатический характер, поэтому температура повышается, приводит к сильному увеличению скорости реакции и еще большему выделению теплоты. В результате наступает тепловой взрыв . [c.384]

    Скорость гетерогенного процесса в целом зависит от скорости отдельных стадий и их соотношения. Возможен случай, когда скорость только одной из них окажется меньше скорости других стадий. Тогда в стационарных условиях эта стадия будет определять скорость и кинетические закономерности всего процесса. Такук> стадию называют лимитирующей. Если лимитирующими являются первая и пятая стадии процесса, то скорость этого процесса зависит от диффузии поэтому кинетические процессы такого типа называются диффузионными процессами. [c.400]

    Влияние диффузии на гетерогенный процесс, о чем говорилось в гл. XIX 6, можетбыть сложным. Диффузия веществ к внешней поверхности (и от нее) реального твердого катализатора, внешняя диффузия, дополняется внутренней диффузией в порах поверхности. Характер этих процессов и их влияние на суммарный процесс зависит от условий перемешивания смеси, конфигурации и размера пор, температуры и других факторов, что осложняется неоднородностью реальных по- [c.274]

    Из соотношений (IV.39) и (1У.40) видно, что величина необратимого полярографического тока как для анодного, так и для катодного процессов зависит от отношения константы скорости реакции н коэффициента диффузии. Когда А мало, т. е. когда Ак<С-Оокс или Ла< >ред, (А) < 1 И необр мэл. В ЭТОМ случае ток полярографической волны будет определяться кинетикой электрохимической реакции и будет называться предельным кинетическим током. Если А велико, т. е. /г )окс или а> Оред, /= (А)->1 и необр обр. Это будет соответствовать случаю диффузионного предельного тока. [c.182]


Смотреть страницы где упоминается термин Процессы, зависящие от диффузии: [c.313]    [c.174]    [c.245]    [c.319]    [c.121]    [c.260]    [c.516]    [c.58]    [c.259]    [c.237]    [c.257]    [c.102]   
Смотреть главы в:

Физические методы анализа следов элементов -> Процессы, зависящие от диффузии




ПОИСК





Смотрите так же термины и статьи:

Процесс диффузии



© 2025 chem21.info Реклама на сайте