Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводороды потока

    После снижения давления до 24 10 Па (2,4 кгс/см ) при температуре 305 °С производят десорбцию нормальных парафиновых углеводородов потоком изопентана, нагретого до 430 °С и проходящего через слой со скоростью 2,1 л/(см2. мин). Расход изопентана составляет 31,8 мз/ч, илп 0,28 объема па 1 объем адсорбента в 1 ч. Таким образом, удельный расход изопентана составляет 0,72 объема на 1 объем сырья илп 3,3 объема па 1 объем десорбированных нормальных [c.440]


    Поток, поступающий в сепаратор, содержит некоторое количество жидкой фазы, в которой растворены высшие углеводороды. Поток пара, выходящий из сепаратора 6, подогревается в теплообменнике 5, а затем смешивается с потоком жидкости, отводимой из сепаратора. Температура потока после смешения на входе в теплообменник 4 составляет около 173 К или несколько выше. В теплообменнике 4 происходит окончательный подогрев ПГ до температуры, близкой к температуре окружающей среды, и затем ПГ поступает на сжатие в турбокомпрессор 7, Поток циркуляционного N2, сжатого в турбокомпрессоре /, как и в схеме ВРУ, приведенной на рис. 5.33, направляется параллельно в теплообменники 2 и Осуществление процесса частичного парциального испарения позволяет обеспечить устойчивую работу узла регазификации СПГ, исключающую забивку теплообменника 3 отложениями тяжелых углеводородов. [c.392]

    Электрокрекинг углеводородов при помощи вольтовой дуги в электродуговых печах постоянного тока. Электроды, напряжение между которыми достигает 1000 В, разделены вихревой камерой с сильно турбулентным движением вводимого в нее газообразного углеводорода. Поток последнего как бы втягивает дугу в кольцевое пространство анода, где и происходит пиролиз. Одним из усовершенствований этого процесса явилось использование горячих продуктов электрокрекинга для гомогенного пиролиза бензина, требующего более низких температур. Это ведет к снижению расхода электроэнергии, большие затраты которой (a 13000 кВт-ч на 1 т ацетилена) составляют главный недостаток метода. Он довольно широко эксплуатируется в ряде стран, в том числе в СССР. [c.103]

    Линии I — сырье II — жидкий изобутан III — свежая кислота IV — отработанная кислота V — пропан VI — углеводороды — поток из реактора на нейтрализацию и в изобутановую колонну VII — циркулирующий изобутан. [c.120]

    Хлор поступает по перфорированной свинцовой трубе в освинцованный чугунный, деревянный или керамический аппарат, оборудованный мешалкой и обратным холодильником. Углеводород насыщается галоидом и отводится по трубе, в которой в защитной рубашке установлена ртутная лампа. При прохождении потока смеси углеводорода с хлором, что облегчается при помощи пропеллерной мешалки, расположенной у входа 3 циркуляционную трубу, протекает хлорирование в ультрафиолетовом свете. Хлорированный углеводород через верхний патрубок циркуляционной трубы возвращается в основной аппарат и там снова насыщается хлором. Образующийся хлористый водород отводится с верха обратного холодильника. [c.144]

    Углеводород поступает в кольцевое пространство 3 и через четыре тангенциальные прорези подводится в смесительную камеру 2, в которую через две форсунки с боковыми отверстиями подается также хлор. При этом возникает завихренный газовый поток, поступающий в собственно реакционное пространство и поддерживающий зерна катализатора во взвещенном состоянии. [c.171]


    Углеводород поступает по трубе 2 в распределительную камеру 3. Сверху камеры имеются многочисленные отверстия 4, размеры которых подобраны таким образом, чтобы поток газа предотвращал падение в них зерен катализатора, вводимого в реакционное пространство. Перед этими отверстиями находятся трубы 5, подводящие хлор, поступающий по линии 6 в распределительную камеру 7. [c.171]

    Газообразный углеводород и азотная кислота смешиваются по возможности гомогенно, а именно так, что в поток газообразных углеводородов впрыскивают под давлением в виде мельчайших капель азотную кислоту. [c.297]

    Высушенный н-бутан испаряют и подают в верхнюю часть реактора, где он смешивается с хлористым водородом смесь проходит сверху вниз через слой катализатора (хлористый алюминий, нанесенный на боксит). Газовый поток (углеводород+хлористый водород) увлекает с собой часть хлористого алюминия. При последующем прохождении продуктов реакции через камеру, наполненную чистым бокситом, хлористый алюминий улавливается. Продукт затем конденсируют и в виде жидкости 1  [c.523]

    Применение сложных ректификационных систем наиболее эффективно при разделении углеводородных газов и особенно легких углеводородов, фазовые превращения которых при дросселировании потоков сопровождаются заметными тепловыми эффектами. [c.106]

    Одноколонные ректификационные системы с несколькими сырьевыми потоками легко реализуются при разделении углеводородных газов по одной из схем, изображенных на рис. П-1 [8]. По схеме на рис. П-1, а сырье после теплообменника делится на два потока, которые затем дросселируются, один из потоков после дросселя поступает в колонну, а другой проходит теплообменник и поступает также в колонну на более низкий уровень по сравнению с первым потоком. По схеме на рис. П-1, б сырье проходит теплообменник и охлаждается обратным потоком жидкости, выходящего из сепаратора, дросселируется и затем делится на паровую и жидкую фазы в сепараторе. Паровая и жидкая фазы дросселируются до рабочего давления колонны и раздельными потоками подаются на ректификацию. Применение таких схем при разделении легких углеводородов позволяет на 30—50% сократить требуемые флегмовые числа, значительно уменьшив тем самым расход дорогих хладоагентов. [c.106]

    В заключение отметим, что блок разделения установки каталитического крекинга можно использовать также для переработки нефтей, коксообразующих и остаточных углеводородов и нефтезаводских некондиционных потоков, нефтяных фракций, содержащих [c.224]

    Продукты реакции разделяются в три ступени по схеме неглубокой переработки и в четыре ступени по схеме глубокой переработки (рис. IV-15). По схеме а неглубокой переработки продуктовая газожидкостная смесь углеводородов после блока термического крекинга поступает в испаритель высокого давления для грубого разделения на паровую и жидкую фазы при избыточном давлении 1 МПа. Паровая фаза поступает затем на разделение в ректификационную колонну 3, а жидкая фаза — в колонну 4 — испаритель низкого давления. Ис.ходное сырье термического—крекинга в жидкой фазе подается в низ колонны 5 и на верх колонны 4, где оно нагревается потоком пара продуктов реакции из блока 1. Разделение сырья на два потока позволяет более полно использовать избыточное тепло паров колонн 3 и 4. Газойлевые фракции из середины колонны 4 используют как сырье печи глубокого крекинга. Верхние продукты колонн 3 и 4 поступают на стабилизацию и разделение на бензин и газойлевые фракции. Давление в колонне 3 0,8—1,2 МПа, в колонне 4 0,15—0,3 МПа. Повышенное давление в первой колонне позволяет поддерживать высокие температуры керосино-газойлевой фракции и остатка, на- [c.225]

    Применение перегретого водяного пара или нейтрального газа в процессе ректификации углеводородных систем вызвано главным образом стремлением понизить температуры перегонки и этим предохранить от разложения недостаточно термостойкие соединения. Другая причина использования перегретого водяного нара, объясняющая его ввод в отгонные колонны в случаях, когда вследствие небольшого интервала температур процесса опасность разложения углеводородов исключена, заключается в затруднительности или даже практической невозможности оборудования колонны кипятильным устройством, позволяющим обеспечить необходимый для процесса ректификации в отгонных колоннах восходящий паровой поток. Наконец, нейтральный газ может содержаться и в сырьевом потоке колонны нри технологическом процессе его получения. [c.229]

    Пусть в отгонной колонне (рис. IV. ) подвергается разделению бинарная смесь углеводородов а я ш в присутствии перегретого водяного нара Z. Поскольку сам водяной пар непосредственно не распределяется между фазами, оставаясь все время в одном и том же неизменном абсолютном количестве Z в паровом потоке, уравнения материального баланса не содержат величины Z, [c.230]

    Вряд ли необходимо доказывать, какую неоценимую помощь могут оказать эти обобщенные зависимости (диаграммы /Ср—Т, р) для проектирования, контроля и анализа разработки нефтегазовых залежей. Между тем приходится, к сожалению, констатировать тот факт, что эти обобщенные зависимости по величинам Кр чаще всего не характеризуют термодинамическое состояние потока нефти и газа в залежи. Иначе говоря, набор величин /Ср, собранный в графиках, на диаграммах и в таблицах при различных значениях давления и температуры для какой-либо конкретной газонефтяной системы, логически не связан с другими важнейшими параметрами системы, характеризующими термодинамическое состояние (ср, А, г, 5, АС). Значения Кр, представленные в литературе, при различных величинах Тир для какого-либо конкретного состава углеводородов или газонефтяного пласта, даются в отрыве от остальных (а они указываются) важнейших термодинамических [c.92]


    На многих современных установках се]) но кислот но го алкилирования практикуется очистка углеводородиого потока, выходящего из реактс.ра, бокситсгл, а затем уже осуществляется его нейтрализация щелочью и промывка водой. Необходимость такой очистки вызывается образованием под действием катализатора некоторого количества сложных эфиров. При щелочной промывке нейтрализуется только часть кислотных продуктов реакции, а наиболее стойкие из сложных эфиров либо разлагаются при нагреве и вызывают постепенное шламообразование в системе погоноразделения, либо попадают в товарный алкилат и снижают его антидетонацион-ные свойства. [c.341]

    Пьезоэлектрический метод использован также в анализаторе для определения отношения водород — углерод в углеводородах [157]. Смеси углеводородов (например, и-бутана, и-пентана, пен-тена-1) разделяют методом газовой хроматографии на колонке со скваленом и окисляют полученные компоненты кислородом в токе гелия при температуре пламени около 650 °С. После сжигания углеводородов поток окисленных продуктов разделяют на две части одну пропускают над кристаллом кварца, колеблюш,имся с частотой 9,000 МГц, который поглощает воду последовательно из бутана, пентана и пентена. Другую часть потока осушают хлористым кальцием и пропускают над вторым кристаллом кварца, колеблющимся с той же частотой и поглощающим диоксид углерода. Частота колебаний каждого кристалла кварца уменьшается пропорционально количеству поглощенных воды или диоксида углерода каждая из этих двух частот накладывается порознь на фиксированную частоту эталонного генератора — 9,001 МГц, в результате чего образуются три различных дифференциальных частоты. Полученные данные непрерывно регистрируются, и расчет соотношений водород — углерод производится автоматически. В качестве материалов для покрытия кристалла, сорбирующего воду, Сэнфорд и сотр. [157] использовали силикагель, оксид алюминия, природные и синтетические смолы для сорбции диоксида углерода эти авторы применяли полярные вещества, например полиэтиленгликоль. [c.587]

    Этан I-H2/1-I-HI1, этилен I-H2/1-H3/] и бутан-2,3-Н4 (примечание 2) количественно разделяют адсорбционной хроматографией на силикагеле, элюируя последний азотом. Процесс разделения контролируют при помощи двух ламп для определения теплопроводности, соединенных по компенсационной схеме прн этом через одну лампу пропускают азот со скоростью приблизительно 40 мл1мин, в то время как во второй лампе находится десорбированный газ и азот. Как только измерительный прибор покажет, что десорбируется углеводород, поток газа направляют в охлаждаемую ловущку. После того как ббльщая часть азота будет откачана из ловушки с замороженным бутаном-2,3-Н4. бутановую фракцию испаряют в колбу емкостью 400 мл, снабженную ртутным затвором. После освобождения продукта реакции от остатков азота повторным замораживанием, эвакуированием и плавлением в вакууме упругость пара при комнатной температуре составляет 60 мм рт. ст. [c.232]

    Бомбардировка углеводородов потоком ионов с энергией порядка миллионов электроновольт также может быть методом получения карбенов за счет атомного впедрения [301. Однако многие из получающихся при этом продуктов, в том числе значительные количества меченого ацетилена, не типичны для превращения карбенов [уравнение (5)1. [c.65]

    Из верхней части испарительной колонны отгоняется 2-метилпен-тен-1 вместе с непрореагировавпшм пропиленом и другими легкими углеводородами. Поток направляется на питание ректификационной колонны, в которой происходит отделение легкокипящей фракции. Затем 2-метилпентен-1 поступает для дальнейшей- очистки в систему ректификационных колонн и выделенный в виде дистиллята направляется на вторую стадию процесса. [c.195]

    I реактор 2 — ловушка иа приеме компрессора и сырьевая емкость изобу-тановом колонны S — кислотный отстойник 4 — сепаратор 5 — емкость однократного нспарения 6 — пропановая колонна 7 — компрессор 8 — щелочной отстойник 9 — водяной отстойник 10 — изобутановая колонна И — холодильник сырья 12, 13, 14 — насосы 15 — дросселирующий клапан.. Гинии / — сырье II — отходящий углеводородный хладагент III — циркулирующий изобутан IV — свежая серная кислота V — циркулирующая серная кислота VI — углеводороды с кислотой VII — углеводороды — поток из реактора VIII —жидкая часть потока из реактора на нейтрализацию и в изобутановую колонну IX — -С4 -Н алкилат на фракционирование X — [c.117]

    На рис. 3. 9 приведена технологическая схема получения бедного концентрата. Воздух, охлажденный в регенераторах, поступает в колонну 1 высокого давления воздухоразделительного аппарата, где происходит предварительное разделение с получением азота и жидкости, обогащенной кислородом. Окончательное разделение воздуха на азот и кислород осуществляется в верхней колонне 2 низкого давления жидкий кислород, в котором концентрируются криптон и ксенон, стекает в нижнюю часть колонны 2, откуда выводится в основной 3 и выносной 4 конденсаторы. В конденсаторе 3 происходит полное испарение кислорода, который возвращается в колонну 2] в конденсаторе 4, куда направляется около половины произведенного кислорода, небольшое количество кислорода остается жидким, причем в жидкости концентрируются углеводороды. Поток из конденсатора 4 проходит через сепаратор 5, где отделяется жидкость, которая непрерывно выводится из установки через продувочную линию таким способом обеспечивается дополнительная очистка газа от примесей углеводородов. Газообразный кислород, содержащий криптон и ксенон, из колонны 2 и сепаратора 5 вводится в криптоновую колонну 6, где происходит ректификация смеси с получением в качестве нижнего продукта бедного криптонового концентрата, содержащего0,1—0,2% криптона и ксенона, и газообразного кислорода, который, направляется в регенераторы. Рабочее флегмовое чирло (т. е. отношение количеств стекающей жидкости и поднимающегося пара) в верхней части криптоновой колонны составляет 0,11—0,12. Флегма получается в конденсаторе, расположенном наверху криптоновой колонны 6 в межтрубное пространство конденсатора направляется жидкость из куба нижней колонны J, прошедшая адсорберы 7 и переохладители 8, образующиеся в конденсаторе пары возвращаются в верхнюю колонну 2 воздухоразделительного аппарата. [c.126]

    Насыщенный газом уголь попадает из адсорбционной части в ректифи-кациоппую часть колонны, где соприкасается с обратным потоком тяжелых углеводородов, которые были вытеснены водяным паром пз угля в испарительной секции. Эти тян<елые углеводороды вследствие их большего молекулярного веса вытесняют из угля более легкие углеводороды и таким образом в испаритель попадает уголь, содержащий высокомолекулярные углеводороды, находившиеся в разделяемой газовой смеси. [c.75]

    В процессе Галла тяжелая бензиновая фракция нагревается в трубчатой печи до 750° при очень высоко скорости потока. При этом наблюдается значительное газообразование. Жидкая составпая часть продуктов реакции содержит 17—18% толуола, 18% бензола и 6% ксилолов. В настоящее время такой процесс в измененном виде и в условиях максимального ограничения коксообразовапия применяется в первую очередь для получения газообразных олефинов. Ароматические углеводороды при этом в известных условиях являются желательным побочным продуктом. [c.101]

    Промывное масло растворяет нонан неограниченно, так как газо-ноиановая смесь находится уже в точке конденсации. Октан, пентан и пропан, нропускаемые над поглотительным маслом в потоке инертного газа с концентрацией 25 г/ж , поглощаются маслом соответственно до 35%-, 0,5%- и 0,28%-ного содержания их в последнем. Следовательно, активный уголь превосходит поглотительное масло при концентрации извлекаемых углеводородов, равной 25 г/яж  [c.96]

    Точные и подробные сведения о промышленном газофазном нитровании низкомолекулярных парафиновых углеводородов до настоящего времени в литературе отсутствуют. В последнее время Файт и его сотрудники [111] опубликовали более подробные данные о промышленном нитровании пропана. Пропан нагревают до 430—450° и помещают в изолированный реактор под давлением около 7 ат, где он смешивается с потоком 757о-пой мелко распыленной азотной кислоты. Азотная кислота подается форсунками, находящимися в различных местах потока пропана. Расстановка форсунок и количество впрыскиваемой кислоты дозированы так, что теплота испарения достаточна для компенсации тепла, выделяемого при реакции. Этим достигается широкое тем- [c.297]

    Для получения псевдокумола из смеси ароматических углеводо-.родов использовали двухколоиную схему ректификации с прямым потоком в первой колонне с дистиллятом отбирали все легкие углеводороды (о-ксилол, этилтолуол, мезитилен), во второй колон- не с дистиллятом отбирали целевой продукт псевдо кумол и с остатком — гемимеллитол. [c.262]

    Анализ данных показывает, что минимальные потери углеводородов обеспечиваются при работе деэтанизатора с тремя вводами питания прн соотношении потоков питания ла верхнюю, 14-ю и 25-ю тарелки, равном 0,285 0,065 0,65, и температурах потоков питания Тр = Трн 0°С и Г/ 25= 187 °С. Снижение суммарных потерь углеводородов Сз—С4 на установке стабилизации вуктыльокого конденсата за счет оптимизации условий ра боты узла деэтанизации [c.280]

    Регулирование давления. Работа ректификационной колонны во МНОГОМ зависит от качества регулирования давления из-за значительного влияния давления на температуры потоков и долю отгона сырья. Особенно важно регулирование давления при разде-Л81н ии легких углеводородов, и, изом1е(ров. В зависимости от состава и свойств разделяемой смеси и аппаратурного оформления процесса может быть принят один из следующих вариантов регулирования давления в колонне (рис. У1-14). По схеме а давление регулируется изменением проходного сечения клапана, установленного нeпoqpeя тввннo яа паровом трубопроводе из колонны. Схема применяется, когда температура верха невелика и требуется минимальное время запаздывания. По этой схеме уровень жидкости в емкости орошения регулируется изменением расхода охлаждающей воды, в конденсатор-холодильник. [c.329]

    Как и в случае этиленхлоргидрина, для подавления побочных реакций желательно работать при температуре ниже 50—60 °С. При этих условиях этилендихдорид можно в значительной степени вывести из верха колонны газовым потоком и предотвратить образование второй фазы в реакторе. При реакции превращения пропилена более тяжелый дихлорид не позволяет работать с чистым пропиленом, что было бы выгодно. Тем не менее, дихлорид можно отогнать во время реакции обмена прп 50—60 °С, использовав поток углеводорода, содержащий более 45% пропилена. Не вступивший в реакцию газ содержит инертные газы метан, этан, пропан плп азот. При начальном контакте с пропиленовым потоком водная фаза должна содержать не более 0,5 г/л хлора [12]. [c.72]

    Различие в температурных условиях экстракции предопределяется плотностью применяемости растворителя. При фенольной очистке из-за низкой разности плотностей растворителя и исходного сырья градиент экстракции снижают до минимума, так как при смешении вторичных потоков с близкими удельными массами сепарация фаз происходит гораздо медленнее и даже при сравнительно невысоких скоростях в экстракционных колоннах приходится принимать конкретные меры к снижению степени внутренней циркуляции промежуточных масляных фракций. ПовышеЕтие градиента экстракции приводит к заметному повышению относительных скоростей контактирующихся фаз, в результате на отдельных участках по высоте экстракционной колонны не достигает фазовое равновесие. Крометого, эмульгируемость системы фенол —углеводороды еще более ухудшает фазовое равновесие в потоках. Более высокая плотность фурфурола позволяет вести процесс очистки с высоким градиентом экстракции. [c.242]

    Процесс депарафинизации "Дилчил" применяется для депарафинизации дистиллятных и остаточных рафинатов с использованием смеси МЭК с метилизобутилкетоном или толуолом. Процесс отличается от традиционных использованием весьма эффективных кристаллизаторов "Дилчил" оригинальной конструкции. В кристаллизаторах этого процесса используется прямое впрыскивание предварительно охлажденного в аммиачном холодильнике растворителя в поток нагретого в паровом подогревателе депарафинируемого сырья. В результате такой скоростной кристаллизации образуются 1)азрозненные компактные слоистые кристаллы сферической фор — мы. Внутренний слой этих кристаллов состоит из первичных зародышей из высокоплавких парафинов, а внешний слой образован из кристаллов низкоплавких углеводородов.. Суспензия из кристаллизатора "Дилчил" затем направляется после охлаждения до требуемой температуры в скребковых аммиачных кристаллизаторах в вакуумные фильтры. [c.268]

    В случае переработки высокосернистых нефтей предварительное отбензинование нефти является обязательным. Для этого требуется более жесткий режим работы колонны. Чтобы выделить из отбензиненной нефти остающиеся в ней газообразные углеводороды, нужно в отгонной части первой колонны создать сильный паровой поток и обеспечить циркуляцию большого количества горячей струи. При создании парового потока с паровым числом 0,5 необходимость в стабилизации бензина основной ректификационной колонны отпадает. [c.123]

    Все это дает возможность подробнее изучить термодинамические процессы, происходящие в пористой среде коллектора, когда по нему проходит флюид при различных соотношениях составляющих его углеводородов, и ставить вопросы об искусственном регулировании в широких диапазонах эффектов дросселирования жидкости и газа в пласте. Тогда будет можно, с одной стороны, в значительной степени улучшить фильтрационные свойства коллекторов и насыщающих их компонентов жидкости, а значит увеличить и нефтеотдачу пластов и, с другой стороны, благодаря нагреванию движущегося потока провести перенос точек петрации (затвердения) и отложения парафина из глубоких частей лифтовых труб колонны до системы наземных трубопроводов, предотвращая тем самым процесс отложения парафина внутри скважины. [c.11]

    Адсорбция — избирательное поглощение индивидуальных компонентов или их групп из газов, паров или жидкостей твердым поглотителем — адсорбентом. В этом процессе при определенных термодинамических параметрах извлекаемые (целевые) компоненты переходят из газовой или идкой фазы н твердую. При других параметрах процесса начинается обратный переход целевых компонентов из твердой фазы в газовую. Этот процесс называется д е с о р б ц и е й. Примером адсорбции может служить извлечение жидких углеводородоЕ из тощих потоков газа активированным углем, удаление в одел из газа силикагелем или алюмогелем, удаление меркаптанов молекулярными ситами и т. п. [c.50]


Смотреть страницы где упоминается термин Углеводороды потока: [c.117]    [c.107]    [c.78]    [c.107]    [c.133]    [c.134]    [c.122]    [c.284]    [c.288]    [c.317]    [c.424]    [c.248]    [c.93]    [c.151]    [c.154]   
Руководство по газовой хроматографии (1969) -- [ c.0 ]

Руководство по газовой хроматографии (1969) -- [ c.342 ]




ПОИСК







© 2025 chem21.info Реклама на сайте