Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Возбуждение, вероятность

    При хаотическом движении молекул в результате их взаимных соударений в объеме газа устанавливается распределение молекул по скоростям, описываемое законом распределения Максвелла. Согласно распределению Максвелла, существует конечная вероятность присутствия в газе молекул, скорости движения которых достаточно высоки. При соударении таких молекул часть кинетической энергии их поступательного движения передается колебательным степеням свободы в молекуле, и тогда молекула переходит в возбужденное состояние. [c.26]


    Другая характерная особенность газофазного окисления углеводородов в области сравнительно невысоких давлений (0,03—0,25 МПа) и температур (200—400 °С) связана с появлением так называемых холодных пламен. Они проявляются в виде характерного бледно-голубого свечения, возникновение которого обычно связывают с взрывным разложением пероксидов, накапливающихся в окисляемом углеводороде, и с образованием большого количества возбужденных молекул формальдегида (НСНО ) [21]. Прн этом вероятными реакциями образования НСНО считаются следующие  [c.32]

    Возбуждение, или ионизация, атомов при столкновении их с электронами зависит от энергии или скорости последних. В большинстве случаев вероятность возбуждения молекулы или атома до соответствующего уровня знергии возрастает с возрастанием скорости электронов до определенного значения, а при дальнейшем увеличении скорости электронов вероятность возбуждения падает. Вероятностью возбуждения называется отношение числа столкновений электрона с атомом или молекулой, приводящих к возбуждению, к общему числу столкновений. Кривые, характеризующие зависимость вероятности возбуждения от скорости движения электронов, называются кривыми функции возбуждения. Положение максимума на кривой функции возбуждения зависит от мультиплетности исходного и возбужденного уровней (терм). При возбуждении термов той же мультиплетности, что и исходный терм атома, функция возбуждения нарастает довольно медленно, достигая максимального значения при очень больших скоростях электронов. Скорость электронов в этих случаях обычно в несколько раз превышает минимальное значение скорости электрона, при которой возможно возбуждение атома. Если же в результате соударения с электроном возбуждается терм иной мультиплетности, чем исходный, то функция возбуждения быстро достигает максимума и затем так же быстро спадает (рис. И, 8). Функция возбуждения для двух близких линий ртути показана на рис. И, 8. При возбуждении одной линии 2655 к, атом ртути переходит из нормального состояния в состояние При [c.75]

    Зонная теорий ( 50) показывает, что изоляторы и полупроводники в отличие от металлов не содержат частично заполненных энергетических зон. В изоляторах и полупроводниках (при отсутствии теплового или другого возбуждения) зоны, следующие за валентными (заполненными) зонами, являются пустыми, т. е. не. содержат электронов. Проводимость может возникнуть в них только в результате частичного перехода электронов из валентной зоны в ближайшую пустую зону. Возможность и вероятность такого перехода зависит прежде всего от того, насколько эта зона находится выше (по энергетическому уровню), чем валентная зона, т. е. какова затрата энергии, необходимая для такого перехода. Энергетический интервал между этими зонами называют запрещенной зоной, так как в этом интёрвале энергии электроны не могут находиться. Количество энергии, необходимой для указанного перехода, называют обычно шириной запрещенной зоны и выражают в электрон-вольтах. [c.148]


    Для объяснения многих явлений люминесценции, фотохимии и радиационной химии широко привлекаются представления о переносе энергии от одних молекул к другим [1, 2]. Этим понятием охватываются процессы, физический механизм которых весьма различен, а в некоторых случаях, возможно, и неизвестен. С этой точки зрения представляет несомненный интерес установление области, в которой справедливы представления о резонансном механизме переноса энергии электронного возбуждения. Вероятность переноса энергии за единицу времени от возбужденной молекулы В к молекуле А в случае дипольных переходов равна [c.105]

    В растворах и полярных жидкостях эффект сольватации нарушает стабильность образовавшихся ионов и вероятность превращения их в радикалы. Таким образом, причину существенного различия между радиационно-химической активностью данного вещества в жидком н газообразном состояниях следует искать не в различии первичных физических процессов, а в изменении вероятности тех вторичных процессов, которые протекают вслед за первичными актами возбуждения и ионизации. [c.265]

    Несколько упрощенно можно резюмировать первичный радиационно-химический акт в парах воды следующим образом допустим, что для создания одной пары ионов требуется в среднем 35 eV и что только часть, например 50%, образующихся в конечном счете ионов возникает в результате первичных столкновений. В небольшой части столкновения ионизирующей частицы с молекулами воды будут упругими, но большинство из них будут неупругими и будут приводить либо к ионизации с образованием Н.2О+, Н+ (и ОН), 0Н+ (и Н), либо к возбуждению, вероятно, с диссоциацией на Н (2S) и ОН в 2П- или Е-состоянии. Электрон, выбитый при первичной ионизации, будет в среднем иметь [c.105]

    Эта реакция полностью, экзотермична, и поэтому ион (СНД") имеет высокую степень возбуждения, вероятное время жизни этого иона можно вычислить с помощью уравнения Касселя для мономолекулярной диссоциации [13]. [c.103]

    В современной теории дисперсии поляризуемость определяется, кроме собственных частот, еще вероятностями переходов между всеми возможными стационарными состояниями молекулы (вместо числа электронов по классической теории). Собственные частоты, т. е. различия в энергетических уровнях отдельных стационарных состояний, при нарушении вследствие замещения МОГУТ почти не изменяться, и заместитель может почти исключительно повлиять на частоту, с которой совершаются эти спонтанные переходы. Однако до сих пор невозможно решить, в какой степени нарушения и циклообразование оказывают влияние на собственные частоты и вероятности переходов. Собственные частоты можно было бы получить, как обычно, либо путем определения длины волны, при которой наступает избирательное поглощение, либо определением ступеней возбуждения. Вероятности переходов были бы получены из интенсивности отдельных линий или из дисперсии, если известны все собственные частоты. [c.154]

    Фактор 27 может быть увеличен до 81, если допустить, что N0 также имеет статистически в 3 раза большую вероятность потерять по крайней мере один из квантов при столкновении и таким образом стабилизоваться. Это еш е.не объясняет точное значение 480, и существует возмо/кность, что возбужденные электронные состояния О еще больше уменьшают его стабильность.  [c.276]

    При бомбардировке молекулы электронами возможны различные процессы ионизации и диссоциации. До сих пор нет теории, которая позволила бы рассчитать вероятность того или иного процесса возбуждения молекулы или ее распада. Столкновение электронов, обладающих низкой энергией, с молекулами приводит обычно к переходу молекулы на более высокие вращательные, вибрационные или электронные энергетические уровни. При повышении скорости движения электронов наступает момент, когда энергия ударяющего электрона оказывается достаточной для ионизации молекулы. При дальнейшем повышении энергии электронов возбуждение ионизированной молекулы может привести к диссоциации, в результате которой появляются ионы с меньшей массой, а также нейтральные осколки молекулы. Потенциал, соответствующий наименьшей энергии электронов, при которой в результате столкновения электрона с молекулой происходит диссоциация молекулы с образованием ионов, носит название потенциала появления. [c.76]

    Отметим, что в течение этого процесса стационарное состояние характеризуется отсутствием окраски 12. В этом случае большая часть иода находится в виде Н1. По-видимому, их данные подтверждают именно такую схему. Во всяком случае, они показали, что невозможны другие механизмы, включающие прямые молекулярные реакции. Фотохимическое разложение ацетальдегида значительно сложнее, чем пиролиз нри высоких температурах. Хотя основными продуктами являются СО и СН4, в системе присутствуют также и На, (СНзСО)г, (СН0)2, НСНО и СаНв в количествах, составляющих 1 — 10% от количества СО. Относительное количество этих веществ обычно уменьшается с увеличением температуры [46]. Квантовые выхода понижаются при температурах ниже 100°, но быстро увеличиваются и достигают значений, равных значениям выхода для ниролиза нри температурах около 300°. Существуют данные, свидетельствующие о возможности не радикального, а самопроизводного распада фотовозбужденных молекул СН3СНО, причем этот самопроизвольный распад на СН4 и СО протекает в одну стадию. Вероятность такого распада увеличивается с уменьшением длины волны света. Наблюдаемые эффекты усложняются реакциями возбужденных молекул [c.334]


    Можно ожидать появления частиц С1з при очень высоких концентрациях С12 в газе при низкой температуре и высоком давлении. Таким образом, наиболее вероятно, что при фотохимическом возбуждении С12 вблизи температуры кипения могут быть найдены молекулы С1з. Некоторые соображения об отсутствии С1з высказаны в работе [35]. [c.302]

    Поместив источник и образец в твердые кристаллические решетки, мы не оказали воздействия на переходы без отдачи для всех ядер, но увеличили вероятность перехода без отдачи. Причина этого заключается в том, что энергия у-лучей может привести к возбуждению колебаний решетки. Эта энергия влияет тем же самым образом, что и энергия отдачи в газе, т. е. она приводит к снижению энергии излучающей частицы и увеличению энергии поглощающей частицы. Некоторые характеристики кристалла и условия эксперимента для излучения и поглощения не меняют исходного колебательного состояния решетки, т.е. будут удовлетворять условиям перехода без отдачи. Следует подчеркнуть, что эти условия определяют просто интенсивность наблюдаемых линий, поскольку этим эффектом задается только число частиц с подходящей энергией. Нас не интересует абсолютная интенсивность полос, поэтому здесь не обсуждается этот аспект МБ-спектроскопии. Однако упомянем, что для некоторых веществ (обычно твердых молекулярных веществ) решеточные и молекулярные колебания возбуждаются до такой степени, что при комнатной температуре происходит только небольшое число переходов без отдачи и спектр не наблюдается. Часто спектр регистрируют путем значительного понижения температуры образца. [c.287]

    Таким образом, по теории энергетического катализа, значительную роль в образовании химически активных частиц в разряде (в приведенных выше примерах — свободных атомов) могут играть электронно возбужденные атомы и молекулы, главным образом, вероятно, в метастабильном состоянии. Аналогия с катализом состоит в том, что сами электронно возбужденные состояния непосредственно в акте химического взаимодействия не участвуют, а служат лишь передатчиками энергии от электронного газа плазмы разряда к активируемым молекулам, облегчая, таким образом, образование активных комплексов. В приведенных примерах роль энергетических катализаторов играют атомы и молекулы добавок. Аналогичные функции могут выполнять и электронно возбужденные участники реакции, передавая энергию при ударах второго рода молекулам, себе подобным, или молекулам других участников реакции. Например, при синтезе аммиака возможен процесс [c.256]

    Если считать, что возбуждаются лишь первые колебательные кванты, то расчет показывает, что вероятность возбуждения азота равна 1/100, а возбуждения окиси углерода — 1/30. Величины же колебательных квантов этих молекул почти одинаковы. Различие вероятностей возбуждения указанных молекул объясняется тем, что молекула окиси углерода обладает собственным дипольным моментом, что увеличивает взаимодействие ее с электроном. [c.74]

    Основное состояние октаэдрических комплексов кобальта(П) — и орбитальный вклад в момент предположительно должен быть большим. Примешивание возбужденного состояния несколько снижает момент, но тем не менее он обычно превышает 5 магнетонов Бора (чисто спиновый магнитный момент равен 3,87). Основное состояние тетраэдрических комплексов кобальта(П) — А2, и магнитный момент может быть небольшим, вероятно, может приближаться к значению, обусловленному вкладом чисто спинового магнитного момента. Однако возбужденное магнитное состояние в тетраэдрических комплексах сравнительно мало по энергии и может смешиваться с основным состоянием. Рассчитанные [13] и экспериментально установленные магнитные моменты лежат в интервале 4—5 магнетонов Бора. В соответствии с уравнением (11.36) для тетраэдрических комплексов кобальта(П) [13] обнаружена обратная зависимость между величиной момента комплекса и величиной Dq. [c.150]

    Причину этого явления мы уже рассмотрели выше. Интересно, что с увеличением длины волны квантовый выход увеличивается. Это объясняется уменьшением вероятности возбуждения молекул растворителя с уменьшением энергии излучения, инициирующего распад иодистого водорода. [c.235]

    Эта энергия реализуется в виде колебательной энергии связанных осцилляторов. При этом существует конечная вероятность резонансных переходов, приводящих к обмену энергии между осцилляторами. В результате внутренним степеням свободы одной из молекул осциллятора может быть передана избыточная энергия ЛЯосц и молекула перейдет в возбужденное состояние. [c.27]

    Величина вероятности возбуждения существенно зависит от природы атомов и характера термов в них. Возбуждающее действие электронного удара более эффективно, чем действие света. Это объясняется тем, что электрическое поле электрона снимает запреты с переходов. Например, правило сохранения мультиплетности А5 = 0 при бомбардировке молекулы электронами заменяется менее жестким правилом А5 = 0, 1. [c.76]

    Легко видеть, что вероятность локализации электрона в окрестности некоторой точки внутри ямы может существенно изменяться при переходе от одного состояния к другому. Этот вывод имеет весьма общий характер. Так, например, распределение электронной плотности в основном и возбужденных состояниях молекулы различно. [c.55]

    Область наибольшей вероятности нахождения электрона в возбужденном состоянии 25 (плоскость 1-у). [c.31]

    Детальное изучение а-распада показало, что энергия а-частиц, испускаемых изотопом, не одинакова, а имеет вполне определенные, дозволенные значения. Например, при а-распаде тория-228 получается 4 группы частиц с энергиями 5,208 5,421 5,838 6,173 МэВ. Причина этого факта — определенная вероятность образования ядра дочернего элемента не только в основном, но и в возбужденных состояниях. Наибольщее значение энергии а-частиц отвечает процессу образования ядер в основном состоянии, меньшие значения— в возбужденных состояниях. При этом с повыщением уровня возбуждения вероятность перехода в возбужденное состояние падает. Однако возбужденные состояния неустойчивы. Через 10 — 10 с ядро, испуская квант у-излучения, переходит в более низкое возбужденное или основное состояние. Величина у-кванта равна разности уровней, между которыми происходит переход. у-Пзлуче-ние не возникает лишь при образовании дочерних ядер в основных энергетических состояниях. [c.397]

    Перенос энергии в зернах хлорофилла рассмотрен Ламри, Мейном и Спайксом [1301 эти исследователи определили относительный выход флуоресценции хлоропластов в зависимости от интенсивности света, температуры и концентрации окислителя в реакции Хилла. Резонансная миграция возбуждения, вероятно, играет важную роль при собирании энергии многих квантов света в общей основной ловушке, в которой она преобразуется в ту или иную форму химической или электрической свободной энергии. Последние работы по вопросам миграции и сбора энергии обобщены Рабиновичем [172], который предполагает, что единственным существенным типом миграции энергии в хлоропласте является миграция локализованного экситона. Фотосинтезирующая ячейка, вероятно, состоит примерно йз 250 молекул хлорофилла, присоединенных к макромолекуле белка. Однако время жизни возбужденного синглетного состояния хлорофилла ( 10 сек) может быть слишком малым, чтобы допустить миграцию через ячейку из 250 молекул. Эта трудность может быть устранена, если миграция осуществляется триплетными экситонами [150]. [c.132]

    Собственные частоты можно определить нахождением длин волн, при которых происходит селективная абсорбция, или определением уровней возбуждения. Вероятности перехода можно определить из интенсивности отдельных линий поглощения или из дисперсии, когда известны все собственные частоты (ср. гл. X, поглощение света). И на те, и на другие в конъюгированных системах влияют возмущения и циклизация. Если бы удалось узнать отдельно, как влияют они на частоту и как на вероятность перехода, то, как указал Гюккель (W. Hu kel, 1935), было бы возможно также объяснить и появление различных видов реакционной способности у конъюгированных двой-.ных связей. [c.90]

    Поскольку в настоящей главе рассматриваются главным образом первичные процессы, приводящие к электронному возбуждению, вероятно, не имеет смысла затрагивать описанное в литературе качественное толкование неопределенностей, относящихся к системе О-ЬЫО, с применением детальных кинетических схем, включающих большое число вторичных процессов. Хейклен и Коэн [187] составили обзор по кинетике этого процесса хороший анализ экспериментальных и теоретических данных можно найти также в работах Клайна и Траша [192], а также Кауфмана и Келсо [191]. [c.189]

    Для реакций в конденсированной фазе наблюдается ряд специфических процессов, изменяющих течение процесса по сравнению с протеканием его в газовой фазе. Большое увеличение плотности при переходе от газовой фазы к жидкой увеличивает удельную ионизацию, но одновременно облегчает возможность дезактивации и сокращает длительность пребывания в возбужденном состоянии. Процессы рекомбинации ион9в и радикалов облегчаются близостью молекул жидкости, играющих роль третьей частицы. Кроме того, возможна непосредственная рекомбинация тех частей молекулы, которые образуются вследствие прямой диссоциации. Это явление наблюдается и в газах с большим молекулярным весом. Вероятность рекомбинации радикалов, возбужденных молекул и ионов возрастает с увеличением молекулярного веса соединений. Чем больше молекула газа, тем больше у нее степеней свободы и тем большее время молекула может находиться в состоянии с большим запасом энергии, благодаря распределению этой энергии по степеням свободы. Кроме того, чем больше молекула, тем меньше будет различие между конфигурацией иона и конфигурацией незаряженной молекулы и тем более вероятен будет процесс разряда иона без последующего распада. Ниже приведены данные Шепфле и Феллоуса о количестве выделяющегося газа при облучении различных алканов нормального строения электро- [c.264]

    Вероятность (функция) возбуждения. Вероятность (функция) ионизации. Когда скорость электрона меньше скорости, соответствующей первому критическому потенциалу, столкновение его с атомом всегда упруго, за исключением тех случаев, когда медленно движущийся электрон, попав в сферу действия атома, ие может из неё вырваться и образует вместе с атомом отрицательный ион. Если же скорость электрона больше первой критической скорости, то столкновение его с атомом может быть как неупругим, так и згпругим электрон отдаёт свою энергию атому не обязательно, а лишь в некотором и притом довольно небольшом числе случаев из всех столкновений. Относительное число этих благоприятных для возбуждения случаев, или вероятность возбуждения, определяют, подсчитав, с одной стороны, из длины свободного пути электрона в газе число столкновений электронов данного пучка с атомами газа, а с другой — по уменьшению силы электронного тока число электронов, выбывающих из пучка вследствие потери скорости при столкновении. Ионизация при этом не должна происходить, или же число актов ионизации должно быть учтено по току положительных ионов на соответствующий электрод. Другой метод определения числа актов возбуждения — определение этого числа из спектроскопических данных. Та функция, которая определяет зависимость вероятности возбуждения атома электроном от скорости электрона, или, что то же, от пройденной электроном разности потенциалов U, называется функцией возбуждения. [c.203]

    В описываемом эксперименте спектры фото- и радикалолюминесценции были одинаковыми. Это дает основание считать, что в обоих случаях за появление свечения ответственны одни и те же центры люминесценции. При соответствующих плотностях возбуждения вероятность безызлучательных переходов в обоих случаях в связи с этим должна быть одинаковой. [c.151]

    С ПОМОЩЬЮ уравиеиия Х=кс1АЕ, где АЕ — энергия перехода из основного состояния в возбужденное. Вероятность такого перехода зависит от иитенсивности падающего света, так как с увеличением интенсивности возрастает вероятность поглощения кванта необходимой длины волиы. [c.68]

    Таковы лишь некоторые начальные аспекты свободно-радикальной теории радиолиза. Подробное изложение проблемы содержится в работах А.К.Пикаева [17, который отмечает большое значение процессов в шпорах , называя их святая святых радиационной химии. В случае облучения воды электронами с энергией 1-2 МэВ, имеющих величину линейной передачи энергии 0,2 эВ/нм, энергия передается воде порциями в среднем по 100 эВ и среднее расстояние между отдельными точками, где происходят акты ионизации и возбуждения, составляет 500 нм. Радикалы Н и ОН, образующиеся в пределах небольшой шпоры , рекомбинируют или диффундируют в объем раствора, где и вступают в реакции с растворенным веществом. Поскольку расстояние между этими шпорами велико, вероятность внутритре-кового перекрытия таких расширяющихся шпор мала. [c.194]

    Так как процесс возбуждения /(-серии наблюдается одновременно в громадном количестве атомов, а вероятность перехода электрона из вышерас-положенных слоев на /(-уровень неодинакова, то все спектральные линии серии возникнут одновременно, а их интенсивность (определяемая вероятностью переходов) будет различной. [c.108]

    Первоначально пытались объяснить эти результаты, предполагая образование каталитического комплекса сенсибилизатора и добавки, но такое предположение не согласуется с отсутствием влияния комплекса без воздействия -квантов. Более естественно объяснить этот эффект на основе поглощения энергии тушителем возбужденного состояния гранс-изомера. В этом случае добавка стабилизирует молекулы гранс-олефина и позволяет селективно Перевести цис-тоиер в транс-. Олефины сами являются активными тушителями (сечение захвата у пропилена равно 0,46 нм про-,Тив 2,3-10-2 нм для пропана), и, естественно, они активно поглощают энергию возбужденных молекул сенсибилизатора. Таким рбразом, из проведенного рассмотрения ясны многостадийный ха- )актер передачи энергии при активированной цис-гранс-изомери-Йацйи и вероятность существования нескольких различных возбуж-ненных форм сенсибилизатора и олефина. [c.65]

    Еще один случай сенсибилизации реакции в разряде, а именио увеличение выхода озона в присутствии азота, был рассмотрен в 6 дайной главы. Роль энергетического катализатора играет, вероятно, электронно возбужденная молекула азота в метастабильном состоянии (Н ), и процесс образования озона можно представить следующим образом  [c.256]

    Многие из пиков, помеченных буквами А, В, С и В, приписаны возбуждениям встряхивания [27]. Вероятно, пики встряхивания могут быть идентифицированы для многих молекулярных частиц и, возможно, окажутся полезными для идентификации электронных структур многих систем. Следует отметить, что ярко выраженные сателлиты встряхивания были обнаружены в фотоэлектронных спектрах Ы1(СО)4, Ре(СО)5, Сг(СО)б, (СО)б и (СО)5СгХ (Х = КНз, РРЬ, и т.д.) [61]. [c.354]

    Область наибольшей вероятности нахож 1сния электрона в возбужденном состоянии 2р (плоскость 1-у). [c.31]

    Измерение абсолютных концентраций при помощи метода резонансной флуоресценции тр( бует знания вероятности возбуждения изучаемых частиц, тушения их флуоресценции и радиационного времени жизни т. Измерение интенсивности резонансной флюоресценции нри известном т позволяет определить концентрацию возбужденных частиц, которая всегда значительно меньше концентра 1,ин мевозбужденных частиц. Нахождение же числа последних, представляюп1 пх основной интерес с точки зрения кинетики и механизма изучаемой реакции, требует донолиительпых исследований. В самом общем случае между концентрацией возбужденных п и невозбужденных п молекул данного вещества существует соотношение [c.25]


Смотреть страницы где упоминается термин Возбуждение, вероятность: [c.30]    [c.99]    [c.239]    [c.276]    [c.317]    [c.343]    [c.415]    [c.256]    [c.186]    [c.67]    [c.80]    [c.208]    [c.58]   
Спектральный анализ газовых схем (1963) -- [ c.14 ]




ПОИСК





Смотрите так же термины и статьи:

Атомы вероятность возбуждения

Вероятность

Вероятность (функция) возбуждения. Вероятнесть (функция) ионизации

Вероятность ионизации. Вероятность возбуждения

Вероятность передачи энергии возбуждения от донора к акцептору при наличии диссипативной среды

Температура возбуждения доверительные вероятности



© 2025 chem21.info Реклама на сайте