Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматография на сорбентах с химически связанными фазами

    Взаимосвязь между строением сорбатов и их удерживанием на полярных химически связанных неподвижных фазах изучена пока слабо. Однако имеющиеся в литературе примеры позволяют полагать, что общие подходы, оправдавшие себя в хроматографии на силикагелях и алкилсиликагелях, применимы и к этому классу сорбентов. Так, в [432] показано, что удерживание ароматических углеводородов на цианопропилсиликагеле Супелкосил N подчиняется уравнению (4.23). Найдены вклады некоторых функциональных групп в удерживание на этом сор- [c.165]


    Более детальный анализ зависимости (4.55) пока не представляется возможным, и дальнейшие исследования в этом направлении, несомненно, потребуют проведения целенаправленных систематических экспериментов. В то же время, по нашему мнению, уравнения (4.52) и (4.55) относятся к числу наиболее общих закономерностей жидкостной хроматографии с бинарными подвижными фазами. Они должны соблюдаться во всех системах, где определенные множества сорбатов взаимодействуют с поверхностью по одному и тому же вытеснительному механизму. Подобное явление наблюдается и при хроматографии на полярных химически связанных неподвижных фазах. В качестве дополнительных примеров, подтверждающих сказанное, мы включили в табл. 4.28 также данные, полученные в условиях тонкослойной хроматографии на окиси алюминия и полиамидном сорбенте. [c.144]

    Селективные сорбенты можно получить в результате закрепления на поверхности носителя (посредством ковалентных связей) мономолекулярного слоя жидкой фазы. Такие сорбенты с ориентированным расположением молекул фазы называют иногда щетками . Химическое связывание неподвижной фазы устраняет или значительно уменьшает все проблемы, связанные с частичным вымыванием жидкой фазы из колонки при традиционной распределительной хроматографии, как-то Дрейф нуля при ГЖХ с программированием температуры или жидкостной градиентной хроматографии, загрязнение продукта жидкой фазой при препаративном выделении вещества, трудности (по той же причине) совмещения газового хроматографа с масс-спектрометром в связи с весьма высокой чувствительностью последнего, и т. п. [c.208]

    Процесс гомеополярной сорбции — есть химический процесс взаимодействия, связанный с проявлением ковалентных сил. При этом возможны самые разнообразные случаи, начиная от глубоких химических реакций, приводящих к полному разрушению прежней структуры сорбента и образования новой твердой фазы и кончая различного рода поверхностными химическими реакция-вш, в частности так называемая активированная адсорбция относится к этому виду сорбции [1, 14, 86, 87, 103, 106, 123]. Соответствующая разновидность хемосорбционной хроматографии только сейчас зарождается [39]. [c.18]

    Разделение хелатов в этом случае основано на адсорбционных эффектах, связанных с взаимодействием адсорбента, комплексного соединения металла и подвижной фазы. Адсорбция на силикагеле идет за счет взаимодействия его полярной поверхности и полярных групп хелатного комплекса. Удерживание комплекса на поверхности сорбента определяется природой функциональных групп и возможностью приближения этих функциональных групп к поверхности адсорбента. Чаще всего в адсорбционной хроматографии высокого давления используют такие хелаты, как дитизонаты, ди-тиокарбаматы, ацетилацетонаты, 8-оксихинолинаты, пиридилазо-нафтолаты. Они должны хорошо растворяться в органических растворителях, не вступать в химические взаимодействия с носителем и подвижной фазой и быть устойчивыми. Предварительно металлы экстрагируют из анализируемого раствора в виде соответствующих хелатов. Полученный экстракт вводят в колонку и хроматографируют. Иногда из экстракта отгоняют растворитель, а сухой хелат растворяют в том органическом растворителе, который служит подвижной фазой. [c.190]


    ТСХ-пластины для распределительной ТСХ с химически связанными фазами имеют преимущества перед импрегнирован-ными не требуется насыщения элюента неподвижной фазой, разделяемые вещества не загрязняются неподвижной фазой, характеризуются более воспроизводимыми величинами / /, меньше влияют на результаты остаточные силанольные группы. Пластины для тех с диольной химически связанной фазой по хроматографическим свойствам близки к пластинам с немодифицированным силикагелем. Однако адсорбционная активность гидроксилов, а следовательно, и удерживание на диольных пластинах слабее. Элюенты для ТСХ на диольных и обычных силикагелевых пластинах близки по составу. Это обычно органические растворители с добавками кислот или оснований. Пластины для ТСХ с нитриль-ными группами в зависимости от используемых элюентов могут быть применены как для прямофазной, так и для обращенно-фазовой с разным порядком элюирования разделяемых соединений. Эти сорбенты могут также применяться для ион-парной хроматографии. ТСХ-пластины с аминогруппами являются слабоосновным ионообменником. Эти пластины можно применять для разделения веществ с разными суммарными зарядами ионизированных групп и различающихся гидрофобностью заместителей [c.344]

    Значительно расширились возможности высокоэффективной жидкостной хроматографии благодаря использованию модифицированных силикагелей с химически связанными фазами. Фазы, не связанные ковалентными связями, оправдавшие себя в-газовой хроматографии, в жидкостной хроматографии не принесли удовлетворительных результатов. Для ковалентного связывания фаз были разработаны различные способы, но в последнее время почти исключительно используют реакции сила-нольных групп силикагеля с органоалкоксисиланами или орга-ногалогенсиланами. Химическое связывание фазы при этом происходит посредством гидролитически прочной силоксановой связи. Механизм таких реакций сравнительно сложен и зависит от внутренней структуры силикагеля, характера силанизи-рующего агента и не в последнюю очередь от возможного присутствия воды в реакционной среде. При использовании крем-нийорганических соединений с двумя или тремя реакционными группами в присутствии воды может происходить гидролитическая полимеризация, и на поверхности силикагеля закрепляется образующийся полимер. Такой сорбент имеет, как правило, более высокую емкость. В то же время у материала с полимерным слоем фазы замедлен массоперенос, что отрицательно сказывается на эффективности и скорости разделения. Поэтому отдается предпочтение сорбентам с тонким мономолекулярным слоем фазы, при изготовлении которых вода из реакционной среды должна быть полностью удалена. В этом случае диаметр [c.238]

    Адсорбционная хроматография аминокислот на неполярных неподвижных фазах, впервые предложенная в сороковых годах, в период после пятидесятых годов в какой-то степени утратила свое значение в связи с разработкой метода ионообменной хроматографии. Однако развитие высокоэффективной жидкостной хроматографии (ВЭЖХ) вновь пробудило интерес к этим фазам. Сравнивая методы ВЭЖХ, ионообменной и газовой хроматографии применительно к разделению аминокислот, следует иметь в виду, что автоматическое оборудование для ионообменной хроматографии дорого и пригодно только для анализа аминокислот, причем полное разделение 20 природных аминокислот занимает около 60 мин, для газохроматографического анализа необходима предварительная модификация аминокислот с целью получения их летучих производных, что возможно далеко не во всех случаях. Однако метод ВЭЖХ является весьма гибким и с помощью сравнительно недорого оборудования позволяет решать разнообразные проблемы, связанные с изучением различных веществ. В частности, 20 аминокислот можно разделить данным методом менее чем за 40 мин. В результате многочисленных систематических исследований сорбентов установлено, что химически связанные фазы являются наилучшими для анализа аминокислот и пептидов. [c.43]

    Интенсивные исследования последних десятилетий, громадный объем накопленных экспериментальных данных позволяют сегодня уже говорить о классификации вариантов в рамках метода высокоэффективной жидкостной хроматографии. Конечно, при этом остается в силе классификация по механизму сорбции, приведенная выше. Однако часто в литературе по ВЭЖХ используются и другие классификация и терминология, не всегда до конца логичные. Так, в соответствии с типом сорбента можно различать хроматографию в системах жидкость— твердое тело, распределительную, на химически связанных неподвижных фазах. Часто, в особенности в зарубежной литературе, хроматографию на твердых адсорбентах относят к адсорбционной. Как показали исследования, ставить знак равенства между этими двумя терминами нельзя, так как не всегда именно поверхность твердого адсорбента ответственна за удерживание — зачастую главную роль играет адсорбированный на йей слой компонентов подвижной фазы (хроматография на динамически модифицированных сорбентах). С другой стороны, сорбция на химически связанных неподвижных фазах часто имеет обычный адсорбционный механизм. [c.15]


    Ряд исследователей с помощью динамического модифицирования получили системы, по свойствам напоминающие системы с химически связанными неподвижными фазами. При этом часто отмечается высокая эффективность, стабильность и хорошая воспроизводимость результатов. Так, в работе [141] описано поведение полиядерных ароматических соединений на силикагеле и окиси циркония, находящихся в равновесии с типичным обращенно-фазовым элюентом — смесью метанола и воды (1 1). К элюенту добавляли различные количества цетил-триметиламмонийбромида. Введение этого реагента в подвижную фазу в концентрациях до 0,01—0,02 моль/л приводило к возрастанию удерживания. Порядок элюирования сорбатов — обра-щенно-фазовый. Как видно из рис. 4.44, величины удерживания на силикагеле, модифицированном динамически, и октадецилсиликагеле различаются не слишком сильно. Коэффициент емкости на динамически модифицированной окиси циркония меньше, чем на аналогичным образом обработанном силикагеле, и разница примерно соответствует различной удельной поверхности этих сорбентов. Зависимость удерживания от концентрации метанола в подвижной фазе также напоминает закономерности, характерные для обращенно-фазовой хроматографии на алкилсиликагелях. [c.177]

    В заключение отметим, что в последние годы широкое применение в хроматографии получили сорбенты с химически связанными (привитыми) фазами, так называемые дуропаки (прививка по связи Si—О—С) и пермафазы (прививка по связи Si—О—Si) [165]. Сорбенты второго типа более стабильны при повышенных температурах и менее подвержены гидролизу. Хотя в настоящее время сорбенты обоих типов используют в основном для жидкостной хроматографии, твердые тела с привитыми фазами представляют несомненный интерес, как адсорбенты и носители и для газовой хроматографии [166, с. 87]. [c.167]

    Нанесение пробы вещества на неподвижную фазу до насто-шцего времени все еще является наиболее критической и длительной по времени процедурой. Анализируемый образец вносят на поверхность слоя сорбента в виде пятна или полосы на небольщом расстоянии от нижнего края пластинки при линейной хроматографии, либо по окружности на периферии пластинки при антикруговой [366] хроматографии. Стартовые зоны должны быть минимальны по размерам диаметр нанесенного пятна 2-4 мм для слоев сорбентов, используемых в ВЭТСХ, оптимальный размер пятен составляет около 1,0 мм. Размер стартового пятна сильно зависит от выбранного растворителя. Центры пятен должны отстоять друг от друга на расстоянии 10-15 мм. Слой сорбента не должен повреждаться при нанесении пробы. Используемый растворитель должен иметь минимальную элюирующую силу (неполярные растворители умень-щают размывание пятна в точке нанесения образца), быть низ-кокипящим, дешевым, нереакционноспособным. Кроме того, он должен хорошо растворять пробу, смачивать слой сорбента и быть достаточно летучим, чтобы его можно было легко удалить с пластины по окончании элюирования. Сорбенты с химически связанными слоями плохо смачиваются некоторыми растворителями, что в значительной степени препятствует проникновению пробы в слой. Это особенно проявляется при работе с обращенно-фазными сорбентами и анализируемыми пробами, растворенными в водно-органических системах. В таких случаях в качестве растворителей рекомендованы метанол, ацетон, ацетонитрил, хлористый метилен. [c.384]

    Одна из причин, по которым газовая хроматография неорганических веществ отстает от газовой хроматографии органических соединений, заключается в том, что при анализе неорганических систем часто возникают трудности, связанные с алрессианостью многих неорганических веществ по отношению к м атериалам, применяемым для хроматографического анализа — сорбентам, неподвижным фазам и материалам, из которых изготовляется аппаратура. Другая причина состоит в том, что для анализа неорганических систем разработаны клас-оичеокие методы, значительно превосходящие по скорости и точности большинство методов органического анализа. Это объясняется тем, что химические свойства неорганических компонентов сложных смесей различаются в достаточной степени для того, чтобы на этом различии могли быть ошованы методы разделения. Для разделения же смесей органических веществ, часто мало различающихся по химическим свойствам, трудно было найти соответствующие методы анализа. Поэтому в большинстве областей неорганической аналитической химии газовая хроматография смогла конкурировать с другими методами лишь после того, как было доказано ее преимущество в отношении чувствительности анализа и возможности его автоматизации. [c.7]


Смотреть страницы где упоминается термин Хроматография на сорбентах с химически связанными фазами: [c.16]    [c.107]    [c.6]    [c.6]    [c.6]   
Смотреть главы в:

Жидкостная хроматография нефтепродуктов -> Хроматография на сорбентах с химически связанными фазами

Жидкостная хроматография нефтепродуктов -> Хроматография на сорбентах с химически связанными фазами




ПОИСК





Смотрите так же термины и статьи:

Вла га в химически связанная

Сорбенты

Сорбенты хроматографии

Фазы п хроматографии



© 2025 chem21.info Реклама на сайте