Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярный вес, определение по набуханию

    К такой целлюлозе предъявляют ряд требований, которые перечислены в специальных руководствах (отсутствие механических примесей, белизна, определенное набухание в воде и растворах щелочи, низкое содержание лигнина, смол, восков и т. п.). Здесь будут рассмотрены только основные показатели целлюлозы, предназначенной для переработки в волокно, так как эти показатели сильно влияют на процесс приготовления прядильных растворов и качество волокна. Такими показателями являются реакционная способность, молекулярный вес, молекулярно-весовое распределение, содержание низкомолекулярных фракций и содержание окислов и солей железа в целлюлозе. [c.31]


    Скорость протекания этих двух конкурирующих реакций (деструкции и структурирования) определяется рядом факторов степенью распределения тиурама вг латексе, скоростью набухания частиц полимера в растворителе, применяемом для получения эмульсии или дисперсии тиурама Е, скоростью взаимодействия тиурама с полисульфидной группой, продолжительностью и температурой щелочного созревания латекса. Наряду с указанными факторами в значительной степени влияет глубина полимеризации с увеличением конверсии хлоропрена выше определенного предела возрастает тенденция к структурированию полимеров [17, 26]. Аналогично влияет и повышение температуры полимеризации, способствующей в большей степени увеличению скорости структурирования, чем деструкции полихлоропрена. Указанные факторы оказывают также влияние на молекулярно-массовое распределение полимера [26]. ------- [c.374]

    Особенности строения макроцепей и многообразие форм молекулярной подвижности в полимерах приводят к множеству релаксационных процессов, каждый из которых связан с движением кинетических единиц определенного вида и может быть описан спектром времен релаксации. Времена релаксации, связанные с подвижностью крупных отрезков цепи, могут быть довольно большими. Соответствующие им релаксационные процессы протекают медленно. Мелкомасштабные движения макроцепей, обеспечивающие образование дырок , ускоряют релаксационные процессы. Приближенный расчет времени релаксации таких быстрых процессов при объемной деформации некоторых полимеров (сополимеров), выполненный в работах [16—18], показывает, что при проникновении низкомолекулярного компонента в полимер проницаемость последнего контролируется перемещением структурных элементов макроцепей только в начальный период процесса набухания (время релаксации 10 — 10 с). [c.297]

    Вязкость растворов полимеров. Хотя растворы полимеров представляют собой молекулярно-дисперсные системы и этим вполне соответствуют условиям истинного растворения, для них характерна исключительно высокая вязкость. Столь высокая вязкость растворов затрудняет их детальное изучение, определение теплот растворения и набухания и величины молекулярного веса полимера. Даже при большом разбавлении (0,25—0,5%) вязкость раствора полимера в 15— 5 раз превосходит вязкость растворителя. Высокая вязкость полимерных растворов обусловлена большими размерами макромолекул и их нитевидным строением. Размеры макромолекул в сотни и тысячи раз превосходят размеры молекул растворителя и обладают значительно меньшей подвижностью. Поэтому макромолекулы оказывают сильное сопротивление движению жидкости (растворителя). Сопротивление движению жидкости возрастает с увеличением длины макромолекулы и степени ее вытянутости. Клубкообразные макромолекулы быстрее перемещаются в растворителе и не столь сильно затрудняют движение молекул растворителя. Благодаря этому уменьшается коэффициент внутреннего трения, что приводит к снижению вязкости раствора. Вязкость увеличивается и с возрастанием сил межмолекулярного взаимодействия, поскольку затрудняется скольжение цепей относительно друг друга. [c.68]


    Примечательно, что студень, в котором жидкая среда заменена чужеродной жидкостью, часто обладает повышенной жесткостью и не претерпевает усадки при высушивании. Молекулярная сетка такого модифицированного студня как бы теряет эластичность и способность сокращаться при удалении из нее среды. Кроме того, в таких студнях, как показал Германе, даже после их тщательного высушивания остается некоторое количество жидкости, что, вероятно, обусловлено чисто стерическими причинами. Ниже определенной степени набухания молекулярные цепи в студне весьма плотно упакованы и молекулы среды остаются как бы окклюдированными между ними. Продвигаться между тесно сблизившимися макромолекулами могут только молекулы жидкости, растворяющейся в высокомолекулярном соединении. Все вышеуказанное в некоторой степени объясняет тот общеизвестный факт, что остатки (следы) жидкостей, находящихся в пленках высокомолекулярных веществ, удаляются из них с большим трудом. [c.489]

    Полиэлектролитное набухание можно устранить путем введения в исходный раствор некоторого избытка нейтрального низкомолекулярного электролита или путем поддержания постоянной ионной силы раствора при разбавлении. Тогда концентрация компенсирующих противоионов в молекулярных клубках не изменяется при разбавлении, и полиэлектролит в растворе ведет себя, как незаряженный полимер приведенная вязкость линейно уменьшается с уменьшением концентрации (см. рис. IV. 3). Аналогичное поведение обнаруживает полиэлектролит в растворителях с относительно низкой диэлектрической проницаемостью, в которых электролитическая диссоциация практически полностью подавлена (например, полиметакриловая кислота в абсолютном метаноле или полиакриловая кислота в диоксане). Такими приемами разбавления или подбором подходящего неводного растворителя пользуются при определении молекулярной массы полиэлектролита вискозиметрическим методом. [c.121]

    Молекулярный вес является важнейшей характеристикой высокомолекулярного соединения. От него зависят все основные свойства данного вещества эластичность, прочность, способность к набуханию и растворению. Обычные методы определения молекулярного веса органических соединений непригодны для высокополимеров. В связи с этим был разработан ряд совершенно новых методов определения их молекулярного веса. Эти методы разделяют на четыре группы  [c.204]

    Высокомолекулярные соединения представляют собой вещества, состоящие из огромных молекул с молекулярным весом порядка от десятков до сотен тысяч у синтетических полимеров, а у природных соединений — даже до миллионов. Величина молекулярного веса наряду со строением молекулы определяет важные в практическом отношении свойства высокополимеров — механическую прочность, эластичность, способность к набуханию и растворению и др. поэтому методике определения молекулярного веса уделяется большое внимание. [c.69]

    Как было отмечено выше, существуют так называемые непористые сорбенты (например, кристаллические тела), в которые не могут без набухания проникать никакие молекулы сорбата. Естественно, что для таких тел = 0. в то же время, коэффициенты молекулярной упаковки кристаллов, как свидетельствуют данные табл.5, находятся в пределах 0,64-0,89. Учитывая, что коэффициент молекулярной упаковки по своему определению представляет собой долю занятого (Ван-дер-Ваальсового) объема, можно сказать, что доля пустого (но недоступного) объема составляет 1 - А = 0,11 -0,36. Этот пустой объем недоступен для проникновения даже самых малых молекул сорбата обозначим его через К,,. Тогда объем идеального кристалла (или монолитного аморфного полимера Умт) можно записать как [c.57]

    Полиамиды хорошо набухают в хлорированных органических соединениях. Ранее уже упоминавшаяся трихлоруксусная кислота, метиленхлорид, хлороформ и тетрахлорэтилен вызывают набухание или в определенных условиях даже растворение полиамидов. Однако полиамиды не набухают и не растворяются в четыреххлористом углероде. В этом случае важной особенностью четыреххлористого углерода является его молекулярная симметрия. Взаимодействующие с полиамидами хлорзамещенные соединения являются асимметричными и характеризуются довольно значительными величинами дипольного момента, наличие которого делает возможным взаимодействие таких веществ по местам существования водородных связей в полиамидах. Интересно отметить, что тетрахлорэтилен, сохраняющий до некоторой степени алифатический характер, вызывает набухание ПА 11 в большей степени, чем полиамидов 6 или 66. [c.86]

    Молекулярная масса цепей сетки, определенная импульсным методом ЯМР, сравнима с результатами, получаемыми из данных равновесного набухания и растяжения [27]. Однако хорошая корреляция наблюдается только для образцов с Мс менее 10000. Такие параметры сетки, как величина М доля свисающих цепей, время спин-спиновой релаксации и время корреляции, обнаруживают одинаковые зависимости от содержания геля в полимере. [c.516]

    Микроскопическое изучение вулканизационной сетки. Вулка-низат подвергают набуханию до равновесного состояния в стироле в присутствии пероксида, ингибитора и небольшого количества пластификатора (фталата). После полимеризации стирола из полученного композита вырезают ультратонкие образцы, которые обрабатывают тетраоксидом осмия и рассматривают с помощью трансмиссионной электронной микроскопии (ТЭМ). При достаточно большом увеличении можно увидеть сетчатую структуру, темные области которой соответствуют цепям сетки или их пучкам, однако на определенной стадии в процессе фазового разделения образуется тройная система, состоящая из эластомера, полистирола и сополимеризованного стирола. При этом наблюдается линейная корреляция между размерами ячеек и молекулярной массой цепей сетки М что позволяет оценивать плотность цепей сетки для отдельных фаз вулканизатов смесей, причем результаты хорошо согласуются с данными ЯМР-спектроскопии набухших вулканизатов. [c.517]


    Непосредственно на полимерных веществах доступны определению реальные размеры Я молекулярных клубков, например по их гидродинамическому объему, вычисленному по вязкости разбавленных растворов. Так как размер клубка зависит от качества растворителя, то инвариантной по отношению к свойствам растворителя характеристикой полимера является размер клубков в 0-растворителе. С другой стороны, можно вычислить размер цепи Яц при свободном вращении жестких сегментов Куна (при известной величине контурной длины полимерной цепи). Это дает возможность найти длину г сегментов Куна или параметр набухания [c.815]

    Понятно, что интерпретация хроматограмм для определения молекулярно-массовых распределений полидисперсных полиэлектролитов, пол енных в условиях сильной концентрационной зависимости удерживаемых объемов, задача очень сложная. Гораздо проще попытаться подавить эффект полиэлектролитного набухания и, избавившись таким образом от концентрационной зависимости, провести интерпретацию хроматограмм по стандартной методике на основании калибровочной зависимости (1У.20). [c.166]

    Ряд авторов публикует работы по изучению физических, химических и механических свойств полиэтилена, определению кристалличности полиэтилена и температур плавления [208—211 ], кинетике кристаллизации [212], фракционированию и определению молекулярных весов [213, 214], статистической механике разбавленных растворов [215], плотности растворов полиэтилена [216],ориентации в полиэтилене [217—219] и влиянию ориентации на сорбционную способность полимеров [220] и на теплопроводность [221], ядерной магнитной релаксации в полиэтилене [222], зависимости сжимаемости от температуры при больших давлениях [223], влиянию на аутогезию молекулярного веса, формы молекулы и наличия полярных групп [224], фрикционных свойств полиэтилена [225], скорости ультразвуковых волн в полиэтилене [226], реологического поведения полиэтилена при непрерывном сдвиге [227], инфракрасного дихроизма полиэтилена [228], плотности упаковки высокополимерных соединений [229], кристалличности и механического затухания полиэтилена [230], межкристаллической ассоциации в полиэтилене [231], принципа конгруэнтности Бренстеда и набухания поли- [c.188]

    В работах по исследованию свойств растворов поливинилхлорида, опубликованных в последние годы, рассматриваются вопросы, связанные с ассоциацией макромолекул поливинилхлорида [242] и изучением разветвления макромолекул в процессе пластикации [232, 235]. Исследована также зависимость вязкости растворов от величины молекулярного веса и строения макромолекулы поливинилхлорида [233, 234, 351], проведены работы по определению кинетики и теплоты набухания и растворения поливинилхлорида в различных соединениях [230, 245, 352—3551. [c.378]

    Свойства сшитых полиолефинов определяются множеством факторов, важнейший из которых —показатель сшивания [в ряде работ используют понятие плотности сшивания, которое либо совпадает с понятием показателя сшивания, либо выражается как а) концентрация эффективных цепей, б) число узлов сшивания, отнесенное к 1000 углеродных атомов, в) молекулярная масса участка цепи, заключенного между двумя узлами Мс] [374, 382], Методы равновесного набухания, определения модуля сдвига при кручении и некоторые другие позволяют с достаточным приближением получать количественную информацию о плотности сшивания и ее влиянии на свойства сшитых полиолефинов, С увеличением показателя сшивания снижаются относительное удлинение (рис. 9.9, а), плотность полиолефинов (рис. 9.9,6), их деформируемость под действием механических нагрузок (рис. 9.10). Содержание гель-фракции мало изменяется с плотностью сшивания (рис. 9.11). Уже при небольшом показателе сшивания экстрагируемая часть полимера мала. Теоретически для образования нерастворимого геля достаточно двух узлов сшивания на макромолекулу, однако в зависимости от ММР полиолефина при одном и том же показателе сшивания содержание гель-фракции может быть различным. [c.215]

    Влага намокания, как видно из определения, резко отличается от описанных выше. Эта влага не связана с молекулярной структурой материала, она заполняет его крупные пустоты и отжимается без значительного усилия, не вызывает набухания материала и по своим физическим свойствам вполне идентична влаге вне материала. [c.53]

    Прибор для определе ния молекулярного веса по набуханию представлен на рис. 33. Определение сводится к тому, что исследуемое вещество погружают в сосуд с растворителем и измеряют во времени изменение объема жидкости, вызванное набуханием образца. Прибор сконструирован с таким расчетом, чтобы избежать загрязнения или потерь растворителя [c.180]

    Взаимодействие полимеров с растворителем имеет большое значение при переработке полимеров, их применении, в биологических процессах и др. Например, белки п полисахариды в живых организмах и растениях находятся в набухшем состоянии. Многие синтетические волокна и пленки получают из растворов полимеров. Растворами полимеров являются лаки и клеи. Определение свойств макромолекул, в том числе молекулярных масс, проводят, как правило, в растворах. Пластификация полимеров, применяемая в производстве изделий, основана на набухании полимеров в растворителях (пластификаторах). Вместе с тем для практического применения полимеров важным их свойством является устойчивость в растворителях. Для решения вопросов о возможном набу-ханни, растворенпи полимера в данном растворителе или об его устойчивости по отношению к этим процессам необходимо знать закономерности взаимодействия полимеров с растворителями. [c.312]

    Селективность. Под селективностью понимают свойство ионита в одних, и тех же условиях по-разному вступать реакции ионного обмена с разными ионами. Для пояснения селективности существуют определенные модели, но область их применения крайне ограниченна [44]. В соответствии с молекулярной теорией селективность ионита по отношению к ионам равных зарядов определяется степенью ассоциации активных групп ионитов с про-тивоионами. В зависимости от плотности активных групп в ионите между ними (группами, способными к ионному обмену) возникает сила отталкивания, что является фактором, способствующим набуханию ионитов. Действию этой силы противодействует сила структурного взаимодействия. На основании изложенного можно сделать вывод, что селективность ионита возрастает с увеличением степени сшитости ионита, обменной емкости и с увеличением концентрации раствора, проходящего через ионит. Райс и Харрис-153] дали количественное описание селективности, применимое для оценки селективности ионита в неводных средах, но непригодное для ионитов с низкой степенью сшитости и с высокой набухаемостью. В ряде теорий исходят из представления о границе раздела фаз ионит — раствор как о полупроницаемой мембране. В этом случае применимо уравнение Доннана 142], и можно сделать вывод, что селективность ионита зависит от его набухания или-обменного объема. При этом не учитывают межионные взаимодействия, особенно сильные в случае ионитов с высокой обменной емкостью. Поскольку все указанные теории не являются общими, при оценке селективности ионита применяют следующие простые правила [54]  [c.376]

    Студни. Они представляют собой гомогенную систему, состоящую из ВМС и растворителя. Сплошная пространственная сетка имеет в сечении молекулярные размеры и образована не ван-дер-ваальсовыми, а химическими и водородными связями. С одной стороны, студень можно рассматривать как раствор ВМС, который образуется в том случае, если рроцесс растворения останавливается на второй стадии набухания, а с другой стороны, как раствор ВМС, который под воздействием внешних факторов потерял свою текучесть. Такие определения обусловлены двумя возможными способами получения студня. Студень образуется из раствора полимера при его охлаждении, выпаривании или при добавлении в небольших объемах электролита по другому способу студень получают при ограниченном набухании полимера в низкомолекулярной жидкости  [c.372]

    Кроме перечисленных методов определения молекулярного веса, следует указать на методы, использующие молекулярно-кинетические свойства растворов высокополимеров, в которых молекулярный вес может быть вычислен по величине коэффициента диффузии О (см. разд. VI). Однако при этом в известное уравнение Эйнштейна должны быть введены поправки на асимметричную форму молекул В отличие от низкомолекулярных соединений высоко полимеры перед растворением набухают и при этом значи тельно увеличиваются в объеме за счет поглощения раство рителя. Степень набухания — количество жидкости, погло щенной 1 кг вещества, выраженное в процентах к первона чальной массе сухого вещества, — достигает более 1000% [c.74]

    Большое место в книге занимает рассмотрение теории растворов полимеров. Это вызвано, во-первых, тем, что волокна и пленки част(з форм ются т концектрированных растворов, в которых возникают структуры, определяющие свойства изделия. Во-вторых, процессы растворения и набухания лежат в основе взаимодействия полимеров с различными веществами жидкостями и парами), Знание теории разбавленные растворов очень важно для понимания методов определения молекулярного веса и формы молекул полимера. Значительное ввимание уделенное растворам полимеров, объясЕ1яется также и тем, что автор книги сам работает в этой области. [c.11]

    Нахождение параметра растворимости полимеров из данных зависимости Q o (бр) не всегда дает достаточно точный результат. Чем меньше различия в б растворителей, выбранных для испытаний, и искомого значения б полимера, тем выше равновесная степень набухания и точнее результат. Влияние молекулярного веса растворителя при этом не учитывается. По уравнёнйю (5), на котором основан указанный метод, предполагается, что удельная энергия межмолекулярного взаимодействия в системе полимер — растворитель (набухший гель) является -среднегеометрической из удельной энергии когезии компонентов. Однако это справедливо только для систем с близким характером действующих межмоле-кулярных сил. В связи с этим было предложено 24 при определении б эластомеров использовать уравнение (6), введя в него коэффициент К, учитывающий отклонение реальных систем от соотношения (6). Коэффициент К является величиной постоянной для серии растворителей с близким характером межмолекулярного взаимодействия. [c.16]

    Следует отметить высокую чувствительность этого параметра к неоднородности сетки. Так, при анализе данных определения констант скорости набухания сшитой в различных условиях МЦ обнаружены следующие закономерности 1) константы скорости набухания более однородных образцов значительно выше, чем менее однородных по молекулярной массе 2) на прямолинейной зависимости iQmлx—Qt) — ДЛЯ полидисперсного образца во всех случаях наблюдается излом (см. рис. 9.31, 2), в результате чего определяются две константы скорости набухания и К., (рис. 9.32, кривые 1 и [c.223]

    Попытка определения молекулярного веса таких веществ является бесполезной, так как величина пространственной молекулы обусловливается исключительно степенью механического раздробления. В общем случае [1] молекулярный вес 1 г любого полимера сверхмолеку-лярной структуры будет равным 6,06-Ю з. В такого рода структурах речь может идти не об определении молекулярного веса, а лишь об оценке густоты сетки, т. е. величины сегментов между сшивками. Такая приближенная оценка может быть сделана на основании измерения величины набухания [2] или изучения механических свойств набухшего геля [3]. [c.6]

    Растворимость полимера данного полимергомологического ряда падает с повышением молекулярного веса. Это обусловлено тем, что растворение носит равновесн тй т ярякт р и с повышением молекулярного веса отдельные участки длинной молекулы могут оказаться попеременно связанными между собой, в то время когда другие участки молекулы как бы являются растворенными и, таким образом, переход всей молекулы в раствор затруднен тем сильнее, чем больше точек соприкосновения между молекулами. Процесс растворения обычно начинается с проникновения подвижных молекул растворителя в массу полимера, т. е. с набухания. Набухание, как правило, начинается в аморфных областях полимера. Если растворитель только ограниченно растворим в полимере, то через определенный промежуток времени устанавливается равновесие, которое иногда может ограничиться набуханием только аморфных областей полимера. Если растворитель способен к смешению с полимером в любых соотношениях, то непосредственно вслед за набуханием следует постепенный переход молекул полимера в раствор и диффузия их в объеме раствора с образованием истинных растворов. При этом в начале в раствор переходят ааиболее низкомолекулярные фракции. [c.15]

    Существенное влияние на растворимость при сходном химическом составе и молекулярном весе оказывает строение цепи макромолекул. Так, в общем случае, полимеры, имеющие разветвленную структуру благодаря более рыхлой упаковке в массе, растворяются легче, чем линейные. Так, например, крахмал и декстраны растворимы р. воде в широком диапазоне молекулярных весов, а целлюлоза только слабо набухает. Полимеры, имеющие жесткую плоскостную структуру (например, сажа, графит), лишь слабо набухают в некоторых жидких металлах и нерастворимы. Полимеры, имеющие пространственную сверхмолекулярную структуру, как указывалось выше, нерастворимы без разрыва определенной части химических связей, но набухают, если густота сетки допускает диффузию растворителя внутрь массы полимера. В отдельных случаях при набухании объем увеличивается в несколько десятков раз, а в случае густой сетки, как у алмаза, полимер совершенно не способен к набуханию. [c.16]

    Подобные же результаты были получены для натурального и бутилкаучуков. В случае полимеров с пространственной структурой изменения при воздействии механических сил могут быть оценены, как ни странно, по равновесному набуханию в определенных растворителях. Так, изучение набухания ненаполнен-ных вулканизатов бутилкаучука или натурального каучука, подвергнутых деформациям сдвига, одноосного сжатия или растяжения, выявляет заметное изменение способности к набуханию и разрыву поперечных связей, способствующее проникновению растворителя между молекулярными цепями. Способность к набуханию вулканизатов бутилкаучука в вазелиновом масле сильно повыщается после механических воздействий. В случае вулканизатов натурального каучука после многократных продолжительных деформаций степень набухания растет в полярных жидкостях и уменьшается в неполярных (например, в вазелиновом масле). Следовательно, в отличие от вулканизатов бутилкаучука вулканизаты натурального каучука вследствие механической деструкции становятся более полярными, что указывает на развитие реакций окисления во время процесса деформации. [c.188]

    Таким образом, методы исследования локальной конформации полимерных цепей оказываются практически идентичными тем которые применяются для исследования молекулярной структура низкомолекулярных соединений. В то же время методы изучени. конформации макромолекулы как целого в определенной степеш могут считаться специфическими для полимерных объектов. Одниг, tr из таких методов является рассеяние света, измерение которог о Дебай предложил использовать для характеристики размеров поли-, мерных цепей, размеры которых сравнимы с длиной волны Я. Анало- гичный подход использовался также в методе ренртеновской дифракции под малыми углами, что дало возможность исследовать микроструктуру полимеров на уровне элементов размерами порядка сотен ангстрем. В табл. III.1 дан перечень методов исследования структуры полимеров. Естественно, в определенных случаях удается получать косвенную информацию о конформации полимерной цепи в целом по результатам исследования локальной структуры макромолекулы на уровне сегментов. Следует также заметить, что методы исследования свойств растворов полимеров, служащие для характеристики конформации макромолекулы в целом, а также методы исследования набухания, динамических свойств и т. п., позволя- [c.162]

    Естественно, что при интерпретации такой хроматограммы для определения молекулярно-массового распределения следует учитывать не только калибровочную зависимость, установленную для данной системы, но и описанный концентрационный эффект, связанный с нолиэлектролитным набуханием исследуемого полимера. Концентрационную зависимость удерживаемого объема можно получить следующим образом. Пусть для данной системы колонок справедлива калибровка  [c.166]

    Естественно, при этом можно ожидать целого ряда побочных реакций например, эпихлоргидрин может сразу гидролизоваться в водном растворе щелочи, и образующийся эпоксид этерифицирует лишь один гидроксил гидролиз может наступить также и после присоединения эпихлоргидрина к полимеру. В этом случае происходит лишь этерификация полимера глицерином, а поперечные связи не образуются. До настоящего времени с помощью химического анализа удалось получить довольно слабое представление об истинной структуре геля [8, 9]. На фиг. 5 показана часть сетки сшитого геля, содержащая все предполагаемые специфические фрагменты. Гель декстрана (сефадекс) выпускается в продажу в виде гранул определенных размеров. Условия его получения описаны в патентной литературе. Здесь мы рассмотрим лишь полимеризацию в блоке по Флодину [8] и проследим, как изменяется степень набухания геля в зависимости от концентрации и молекулярного веса декстрана, а также от его соотношения с эпихлорги-дрином (см. табл. 3),  [c.32]

    Возможность исследования поведения фактически изолированных друг от друга макромолекул в очень разбавленных растворах стимулировала в течение многих лет попытки изучения деталей их цепного строения путем определения радиуса инерции в различных растворителях и при различных температурах и сравнения поведения различных макромолекул в одном и том же растворителе. Статистическая термодинамика полимерных растворов в своей ранней форме выявила принципиальную зависимость некоторых определяемых величин от степени сольватации свернутой случайным образом полимерной молекулы, например величины второго вприального коэффициента в выражении для осмотического давления, константы седиментации, константы диффузии и удельной вязкости как функции концентрации [1]. Показано также, что экспонента а в известном соотношении между молекулярным весом и характеристической вязкостью и параметр Хаггинса к, по-видимому, каким-то образом зависят от деталей структуры цепи. Однако установленные зависимости носили полуэмпирический и качественный характер и их нельзя было оцепить однозначно. Точно так же более ранние попытки трактовать существующие противоречия в поведении полистирола в растворе не основывались на надежных методах, достаточных для убедительного доказательства наличия разветвлений или макромолекулярной изомерии другого типа [2]. Трудно было даже установить в растворах наличие цис-транс-изомерии молекул, которая, как известно, преобладает в случае натурального каучука и гуттаперчи. Исследование этих двух природных полимеров в твердом состоянии привело ранее к установлению того факта, что каучук представляет собой почти целиком г мс-1,4-полиизопрен, тогда как гуттаперча и другие смолообразные полимеры того же происхождения состоят все из трансЛ, 4-цепей. Это различие в молекулярной структуре вызывает разную способность молекул к упаковке в конденсированном состоянии и приводит к заметно различному характеру твердой фазы, в том числе к различиям в структуре решетки, плотности, температуре плавления, теплоте плавления и т. п. Вследствие этого, когда раствор полимера находится в контакте с твердой фазой, такие показатели, как степень и скорость растворимости, степень и скорость набухания, различны для цис- и транс-жзомеров. Однако при сравнении поведения изолированных макромолекул двух изомеров в очень разбавленных растворах не удается обнаружить каких-либо заметных различий в таких величинах, как значение второго вириальпого коэффициента для приведенного осмотического давления или для удельной вязкости как функции концентрации. [c.87]

    Значительное число работ посвящено изучению свойств растворов поливинилхлорида, в качестве растворителей которого предложено применять смесь четыреххлористого углерода и ацетона сероуглерода и ацетона , нитроэтана, 1- и 2-нитропропана Изучение ряда растворителей показало, что наиболее высокой растворяющей способностью по отношению к поливинилхлориду обладают смеси неполярного растворителя с большим поверхностным натяжением и полярного растворителя с высокой молекулярной поляризуемостью которая связана его электронной структурой. Помимо этого имеют значение стерические препятствия, возникающие при приближении электроно-донорного центра растворителя к молекулам иоливинилхлорида,, а также эффективный объем растворителя. С этой точки зрения хорошими растворителями поливинилхлорида являются циклические эфиры, циклические кетоны, некоторые гетероциклические соединения и М,М-дизамещенные амиды Для определения взаимодействия поливинилхлорида с различными растворителями можно использовать данные, полученные при набухании отдельных образцов полимера [c.493]

    Определение ХПС и, следовательно, радиационно-химического выхода сшивания в настоящее врем я проводят путем измерения статистических (молекулярный вес, доля оль-фракции) и термодинамических (равновесная степень набухания, равновесный модуль упругости) величин, причем измерения выполнякк после облучения образца. [c.277]

    Определение молекулярного веса по набуханию. Метод применим только для определения молекулярного веса высокомолекулярных кремнийорганических соединений. Набухший полимер можно рассматривать как раствор низкомолекулярного растворителя в полимере. Полимер не переходит в раствор, если составляющие его молекулы связаны друг с другом прочными химическими связями, не поддающимися действию растворителя. Существует ряд методов для изучения набухания полимеров в растворителях, которые их полностью не растворяют. Набухание изучено для диметилполисилоксаповых полимеров — эластомеров с молекулярным весом порядка 500 ООО— 800 000 в бензоле . Из эластомера после его вулканизации перекисью бензоила были вырезаны призмы размером 9Х6Х1,8 мм. На одном конце каждого образца было сдел.ч-но отверстие диаметром 0,75 мм для подвешивания образцу. Плотность полимера определяли пнкнометрически. [c.179]

    Расшифровка молекулярного механизма связывания воды кератинами (например, кератином шерсти, волос, ногтей и т. д.) яривлекает внимание химиков уже на протяжении 50 лет [1]. Для объяснения характера изотерм сорбции воды кератином предлагались в основном две модели. Согласно первой модели, постулируется связывание молекул воды определенными дискретными центрами связывания, например полярными боковыми цепями, пептидными связями [2]. Согласно другой модели, первичным механизмом, ответственным за сорбцию воды, является набухание трехмерной сетки, которая образована полипептид-ными цепями [3]. [c.304]


Смотреть страницы где упоминается термин Молекулярный вес, определение по набуханию: [c.33]    [c.65]    [c.33]    [c.43]    [c.36]    [c.92]    [c.598]    [c.174]    [c.133]   
Руководство по анализу кремнийорганических соединений (1962) -- [ c.179 ]




ПОИСК





Смотрите так же термины и статьи:

Молекулярный вес, определение

Набухание



© 2025 chem21.info Реклама на сайте